首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
纳米SiO2对EP/国产芳纶Ⅲ纤维复合材料性能的影响   总被引:1,自引:0,他引:1  
选择纳米SiO2作为增强材料改性环氧树脂(EP)基体,与国产芳纶Ⅲ纤维缠绕成复合材料。研究了不同含量的纳米SiO2对EP基体拉伸性能和冲击性能的影响;通过NOL环复合材料剪切强度测试和纤维缠绕Φ150mm容器水压爆破实验,研究了不同含量纳米SiO2对EP/国产芳纶Ⅲ纤维复合材料层间剪切强度和纤维强度转化率的影响。结果表明,EP基体中纳米SiO2质量分数为3%时,对基体拉伸和冲击性能均有显著改善,拉伸强度和冲击强度分别提高28.8%和22.6%,EP/国产芳纶Ⅲ纤维复合材料的层间剪切强度达到最大值,比未改性配方高出约56.8%;Φ150mm容器水压爆破结果表明,纳米SiO的加入使纤维强度转化率平均提高7%以上。  相似文献   

2.
纳米SiO2对环氧复合材料壳体纤维强度转化率的影响   总被引:2,自引:0,他引:2  
以纳米SiO2作为增强材料改性环氧树脂基体,通过NOL环复合材料剪切强度测试,研究不同含量纳米SiO2粒子对复合材料层间剪切强度的影响。结果表明:纳米SiO2含量在6%时,改性效果最好,复合材料层间剪切强度提高约60%;F-12纤维强度转化率提高约9.4%。  相似文献   

3.
纳米SiO_2改性环氧树脂胶粘剂的研究   总被引:3,自引:1,他引:2  
选择纳米 SiO_2 作为增强材料改性环氧树脂基体, 以物理分散法将纳米 SiO_2 分散在环氧树脂中。通过力学性能测试和热稳定性能测试, 研究了不同含量的纳米 SiO_2 对改性环氧树脂胶粘剂的热性能、拉伸性能和冲击性能的影响; 通过 NOL环测试和扫描电子显微镜(SEM) 分析, 研究了不同含量的纳米 SiO_2 对国产芳纶纤维/改性环氧复合材料的界面性能和层间剪切强度的影响。实验结果表明, 基体树脂中当 w( 纳米SiO_2)=3%时, 改性环氧树脂胶粘剂的拉伸强度和冲击强度分别提高了 28.8%和 22.6%, 复合材料的层间剪切强度(ILSS) 达到最大值, 比未改性胶粘剂提高约 56.8%。  相似文献   

4.
研究了聚对苯撑苯并双口恶唑(PBO)和芳纶(F-12)2种纤维的结构、性能及其单向复合材料的性能。电子扫描电镜照片微观结构的研究表明,PBO纤维与F-12纤维相比较,其分子取向更高,表面更光滑,因而与树脂基体的粘接力较差;而F-12纤维因为分子表面不均匀,有微小的浅沟槽,与树脂基体的接触表面积较大,因而粘接力强。复合材料性能的研究表明,PBO纤维的单向复合材料比F-12芳纶纤维的具有更好的拉伸性能,其中拉伸强度高约34.7%,拉伸模量高约63.8%。但其层间剪切强度却很低,只有24.3 MPa。  相似文献   

5.
本文以纳米SiO2改性树脂作为树脂基体,以连续碳纤维作为增强体制备复合材料,研究了纳米SiO2掺入树脂中百分含量对树脂基体与增强体之间的界面性能的影响。通过对树脂基体与增强体纤维浸润性、微脱粘、层间剪切强度和扫描电子显微镜,对复合材料界面性能测试和表征。结果表明,随着纳米SiO2含量的增加,常温下,基体树脂和增强体纤维浸润性能下降,单丝纤维与树脂微球的界面剪切强度和复合材料单向板层间剪切强度在某一含量范围均有所提高。  相似文献   

6.
经KH550改性的纳米SiO2粒子(150 nm),能够稳定分散在玄武岩纤维涂层浆料中,对浆料的粒径及表面张力影响不大。玄武岩纤维表面经改性纳米SiO2改性后,有效地改善了纤维表面粗糙度,使断裂强力提高18.75%,层间剪切强度提高18.76%。纳米SiO2改性的玄武岩连续纤维及其复合材料断面SEM分析表明,玄武岩连续纤维表面均匀涂覆一层纳米SiO2颗粒,使玄武岩连续纤维与环氧树脂的界面相容性大大提高,复合材料断面非常整齐。改性纳米SiO2在玄武岩纤维及环氧树脂之间起桥梁作用。  相似文献   

7.
EP/纳米SiO2/空心微珠复合材的性能研究   总被引:2,自引:0,他引:2  
选用微米级空心微珠和纳米SiO2作为填料,制备环氧树脂(EP)/纳米SiO2/空心微珠复合材料,研究空心微珠用量对复合材料的拉伸性能和冲击性能的影响,采用扫描电镜(SEM)研究复合材料的断裂模式,初步讨论了复合材料的隔热性能。结果表明,纳米SiO2和空心微珠的加入可以提高复合材料的拉伸强度和冲击强度,并且当空心微珠用量为10%、纳米SiO2用量为3%时,复合材料的各项力学性能最佳。随着空心微珠含量的继续增加,复合材料的拉伸强度和冲击强度均有不同程度的降低,拉伸弹性模量却有提高趋势。此外,空心微珠的加入使复合材料的脆性提高、韧性降低,隔热性能却有所改善。  相似文献   

8.
为提高碳纤维/环氧树脂复合材料的界面结合性能,采用超临界CO2对碳纤维表面进行处理.结果表明:在处理后碳纤维的单丝拉伸强度下降2.81%,碳纤维/环氧树脂界面剪切强度和层间剪切强度在处理后分别提高25.19%和17.11%.通过对碳纤维原子力显微镜(AFM)观察,经过处理的碳纤维表面粗糙度增加明显,同时对复合材料层间剪切断口端面用扫描电子显微镜(SEM)观察,经过超临界CO2处理后的碳纤维与环氧树脂的复合性能得到改善.  相似文献   

9.
采用扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)仪和NOL环等方法,对纳米TiO2在环氧树脂(EP)体系中的分散效果、炭纤维表面状态及复合材料性能等进行了系统研究。结果表明:采用高速剪切与超声波复合分散工艺,可以将纳米TiO2均匀分散在EP体系中;当w(纳米TiO2)=2%~3%时,纳米TiO2/EP浇铸体的最大拉伸强度为112 MPa、最大弯曲强度为175 MPa和最大Tg为141.9℃;纳米TiO2可以有效改善炭纤维与EP基体间的界面结合力,形成较理想的界面相,制成的复合材料具有优异的力学性能,其拉伸强度、拉伸模量和剪切强度分别为2.15 GPa、117 GPa和49.9 MPa。  相似文献   

10.
为了改善芳纶纤维复合材料的界面粘结性能,合成了一种新型树脂(AFR)作为基体,以未经任何表面处理的芳纶纤维作增强材料,制备了芳纶纤维/AFR复合材料。采用测定表面能、接触角、层间剪切强度、横向拉伸性能和扫描电镜观察形貌等方法,从宏观和微观等方面研究了芳纶纤维/AFR复合材料的界面粘结性能。结果表明,AFR树脂与芳纶纤维有相近的表面能,AFR树脂溶液与芳纶纤维的接触角为42.8°,而环氧树脂(EP)与芳纶纤维的接触角为68°,说明AFR树脂对芳纶纤维的润湿性优于EP树脂;芳纶/AFR复合材料的层间剪切强度、横向拉伸强度和纵向拉伸强度分别为74.64MPa、25.34MPa和2256MPa,比芳纶/EP复合材料的相应强度分别提高了28.7%、32.5%和13.4%,其复合材料破坏面的形貌也说明芳纶纤维与AFR树脂之间的界面粘结性能较好。  相似文献   

11.
为了改善芳纶纤维增强树脂基复合材料的界面粘结性能,从树脂基体入手,依据相似相容原理和芳纶的结构特点,合成出新型热固性树脂(AFR–T)用作芳纶复合材料的基体,以未经表面处理的芳纶作增强材料,采用热压成型法制备了AFR–T/芳纶纤维复合材料,并通过测定溶度参数、接触角、线膨胀系数、层间剪切强度(ILSS)和横向拉伸强度等方法研究了复合材料的界面粘结性能。结果表明,AFR–T树脂浇注体与芳纶的溶度参数相近,AFR–T树脂溶液在芳纶纸表面的接触角为36.9°,小于环氧树脂(EP)溶液与芳纶纸的接触角(53.2°),说明AFR–T树脂对芳纶的浸润性优于EP;AFR–T/芳纶纤维复合材料的ILSS和横向拉伸强度为73.0 MPa和25.3 MPa,分别比EP/芳纶纤维复合材料提高了25.9%和32.5%,这表明AFR–T树脂与芳纶纤维之间的浸润性和界面粘结性能较好。  相似文献   

12.
电化学氧化处理对碳纤维及EP复合材料性能的影响   总被引:1,自引:0,他引:1  
利用电化学氧化法对碳纤维(CF)进行表面改性处理,并将改性CF用于改性环氧树脂(EP),研究了CF处理前后纤维复丝拉伸强度和EP/CF复合材料的力学性能。结果表明,氧化处理改善了CF与基体的粘结性;经电化学氧化处理后CF的表面羟基含量提高39.96%,羧基/酯基含量提高141.06%,活性碳原子数增加34.28%;随着氧化电流密度的增加,CF复丝的拉伸强度和复合材料的层间剪切强度均呈现先增大后减小的变化趋势,当电流密度为0.2A/m^2时,复合材料的层间剪切强度提高31.70%。  相似文献   

13.
聚氨酯/环氧树脂互穿网络聚合物硬质泡沫机械性能研究   总被引:3,自引:0,他引:3  
采用同步法合成了聚氨酯/环氧树脂互穿网络聚合物(PU/EP IPN)硬质泡沫,对机械性能进行了研究。结果表明,与纯聚氨酯硬质泡沫相比,PU/EP IPN硬质泡沫的压缩强度和弯曲强度明显提高,在PU/EP IPN硬质泡沫中,随环氧树脂含量增加,PU/EP IPN硬质泡沫压缩强度和弯曲强度随之增大,当E-39D质量分数增加到24.2%时,PU/EP IPN硬质泡沫压缩强度和弯曲强度出现最大值;PU/EP IPN硬质泡沫机械强度随材料密度的增大而增加;随着环氧树脂中环氧值的增加,PU/EP IPN硬质泡沫的压缩强度、弯曲强度和拉伸强度均呈逐渐升高的趋势。  相似文献   

14.
纳米SiO_2对环氧树脂胶粘剂的改性机制及应用研究   总被引:1,自引:0,他引:1  
环氧树脂(EP)具有粘接力强、电绝缘性好、稳定性高和固化收缩率小等优点,但由于纯EP固化后呈三维交联网状结构,导致其内应力大、质脆和抗冲击韧性较差。采用共混法将纳米SiO2(nano-SiO2)加入到EP基体树脂中,制备nano-SiO2/EP复合材料。结果表明:复合材料的剪切强度由16.66 MPa升至18.01 MPa,冲击强度从15.40 kJ/m2升至33.68 kJ/m2,弯曲强度从70.50 MPa升至85.94 MPa,最终nano-SiO2/EP复合材料体系的韧性比不含nano-SiO2体系提高了82.8%。  相似文献   

15.
以不同增韧剂改性EP(环氧树脂)为基体树脂,采用曼尼希改性胺为固化剂制备了不同改性EP胶粘剂。研究结果表明:当增韧剂为聚氨酯(PU)预聚体时,相应的改性EP胶粘剂的粘接性能优异;在上述体系中加入玻璃纤维增强填料后,相应的改性EP胶粘剂的综合力学性能和粘接性能俱佳,其拉伸强度超过75.00 MPa、拉伸模量超过4.00 GPa、断裂伸长率超过4.00%且90°剥离强度超过10.00 kN/m,属于高韧性EP胶粘剂,并且完全满足风电叶片的使用要求。  相似文献   

16.
采用自制的专用处理剂处理聚对苯撑苯并双恶唑(PBO)纤维,研究了PBO纤维增强环氧树脂(EP)(EP/PBO)复合材料的配方体系与制备工艺参数.研究表明,采用EP与4,4-二胺基二苯甲烷(DDS)混合制备的复合材料的剪切强度最高.控制预浸胶带的含胶量为35%~37%,在适宜的缠绕工艺参数与固化条件下,制备的EP/PBO复合材料的NOL环剪切强度达26.28~29.32 MPa.  相似文献   

17.
将纳米二氧化硅(SiO2)和玄武岩纤维与聚氨酯复合制备了聚氨酯硬质泡沫材料,研究了异氰酸酯指数,水、纳米SiO2和玄武岩纤维的添加量及玄武岩纤维的长度等因素对其冲击性能的影响。结果表明,当异氰酸酯指数为1.05、纳米SiO2的添加量为3.0 %、5.0 mm玄武岩纤维的添加量为3.0 %时,材料的冲击强度达到最佳值。  相似文献   

18.
环氧树脂/二氧化钛纳米复合材料的制备及性能   总被引:66,自引:3,他引:66  
以纳米TiO2 为填料制备了环氧树脂/ 二氧化钛(EP/TiO2) 纳米复合材料,研究了纳米TiO2 对复合材料性能的影响,结果表明,纳米TiO2 经表面处理后,可对环氧树脂实现增强、增韧,当填充质量分数为3 % 时,材料的拉伸弹性模量较EP提高370 % ,拉伸强度提高44 % ,冲击强度提高878 % ,其他性能也有明显提高。  相似文献   

19.
采用模压成型工艺和拉挤工艺制备了加捻碳纤维增强环氧树脂(EP/CF)复合材料,利用微机控制电液伺服万能试验机和扫描电子显微镜研究了不同后处理温度对EP/CF复合材料的拉伸性能和断面微观形貌的影响。研究表明,相对于高温后处理下的EP/CF复合材料,室温后处理下的EP/CF复合材料的拉伸强度较优,其拉伸强度接近890 MPa;而随着后处理温度的升高,EP/CF复合材料的截面和表面显微硬度值呈先上升后下降趋势,当后处理温度为150℃时,其硬度值最优。随着后处理温度的上升,样品的断面形态由撕拉态变为剪切状态,整个断面转变为脆性断面,EP与CF之间的界面变差。较优后处理工艺为低温后处理;同时,常温固化剂下的EP和CF体系选择后处理工艺优化时,后固化温度应接近固化体系温度进行优化处理。  相似文献   

20.
Sisal-fiber-reinforced composites, as a class of eco-composites, have attracted much attention from materials scientists and engineers in recent years. In this article, the effects of fiber surface treatment on fiber tensile strength and fiber-matrix interface characteristics were determined by using tensile and single fiber pullout tests, respectively. The short beam shear test was also employed to evaluate the interlaminar shear strength of the composite laminates. Vinyl ester, epoxy, and high-density polyethylene (HDPE) were chosen as matrix materials. To enhance the interfacial strength, two kinds of fiber surface-treatment methods, namely, chemical bonding and oxidisation, were used. The results obtained showed that different fiber surface-treatment methods produced different effects on the tensile strength of the sisal fiber and fiber-matrix interfacial bonding characteristics. Hence, valuable information on the interface design of sisal fiber–polymer matrix composites can be obtained from this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号