共查询到20条相似文献,搜索用时 0 毫秒
1.
Galactosyltransferase, which functions as the catalytic component of lactose synthase and in the glycosylation of glycoproteins, has been previously reported to have an absolute dependence on Mn2+ for activity, with a Kd for Mn2+ (10(-3) M) 2 to 3 orders of magnitude greater than the physiological range of Mn2+ concentrations (v 10(-6) M). Reinvestigation of the metal ion dependence of this enzyme has shown that Zn2+, Cd2+, Fe2+, Co2+, and Pr3+ also produce activation, although with lower activities at saturation than that attained with Mn2+. Velocity against metal ion concentration curves for all metals, including Mn2+, are sigmoid, suggesting the presence of two or more activating metal binding sites on the enzyme. The presence of two sites is confirmed by studies using both Mn2+ and Ca2+. While galactosyltransferase is inactive in the presence of Ca2+ alone, at low concentrations of Mn2+ (10(-5) M), enzyme activity is stimulated by Ca2+. A more detailed investigation by steady state kinetics has revealed that there is a tight binding site for Mn2+ (site I: Kd of 2 X 10(-6) M) from which Ca2+ is excluded, and a site at which Ca2+ can replace Mn2+ (site II: Kd for Ca2+ of 1.76 X 10(-3) M), to which metal binding has a specific synergistic effect on UDP-galactose binding, possibly as a result of the formation of an enzyme-Ca2+-UDP-galactose bridge complex. The site I Mn2+, site II Ca2+-activated enzyme has a maximum velocity similar to that of the Mn2+-activated enzyme, and is the enzyme form that must act in lactose synthesis in vivo. A trypsin-degraded form of galactose transferase (galactosyltransferase-T) (Powell, J.T., and Brew, K. (1974) Eur. J. Biochem. 48, 217-228) appears to lack site I and is activated by Ca2+ in the absence of Mn2+. 相似文献
2.
In the lateral hypothalamic area (LHA) of rat brain, approximately 30% of cells showed sensitivity to small changes in local concentrations of glucose. These "glucose-sensitive" neurons demonstrated four types of behavior, three of which probably represent segments of a continuous spectrum of recruitment in response to ever more severe changes in blood sugar. Type I cells showed maximum activity =5.6 mM blood glucose but became completely silent at hyperglycemia of 10-12 mM (normoglycemia 7.6 +/- 0.3 mM; mean +/- SD). Type II and III neurons exhibited a wider range of response. Type IV cells (5-7% of glucose-sensitive neurons) paralleled the behavior of sugar-sensitive cells in ventromedial hypothalamic nucleus (VMH). In VMH, approximately 40% of cells responded to changes in blood glucose over a range of concentrations from 3.6 to 17 mM, by increasing their firing rate as sugar level rose and vice versa. Ionic shifts during increases in blood (brain) glucose levels were similar in LHA types I-III but fastest in I and slowest in III. [Na+]i fell by 5-9 mM, [K+]i rose by 6-8 mM, and plasma membrane hyperpolarized by 5 mV. [Ca2+]i declined by 15-20 nM in line with membrane hyperpolarization. In VMH and type IV LHA cells, [K+]i fell 3-8 mM and plasma membrane depolarized -3 to -5 mV as blood/brain glucose concentration increased from 7.6/2.4 to 17.6/4.2 mM, whereas [Ca2+]i increased from 125 to 180 nM as a consequence of falling membrane potential. During falls in blood/brain sugar concentration the effects in both VMH and LHA cells were reversed. The findings are consistent with the ionic shifts in types I-III LHA cells being dependent on alterations in Na/K-ATPase activity, whereas those in VMH and type IV LHA cells could be caused by modulation of ATP-dependent K+ channels. A possible mechanism for linking the effects of small changes in glucose to ATP generation, which could bring about the above phenomena, is the interposition of a "glucokinase-type" enzyme in a role similar to that which it has in glucose-sensing pancreatic beta-cells. 相似文献
3.
4.
B Nilius 《Canadian Metallurgical Quarterly》1998,60(3):215-250
Endothelial cells (ECs) provide an ideal surface for blood flow. They inhibit the initiation of blood-clotting, but can also under certain conditions activate this process. ECs influence thrombolysis as well as thrombogenesis. They are "antigen-presenting cells" and play a key role in angiogenesis. In addition, ECs control the permeability of the barrier between bloodvessels and interstitium. One of their most important functions is the regulation of the diameter of the blood vessels and their adaptation to the demanded hemodynamic needs. The production and release of diverse compounds, which interfere with different neighboured target cells, initiate this plethora of functions. Ca2+ signals in endothelial cells play the key role in the release of NO, prostacyclin (PGI2), platelet activating factor (PAF), von Willebrand factor (vWF), tissue plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI). Changes in the intracellular Ca2+ concentration ([Ca2+]i) are determined by release from intracellular stores and entry through the plasma membrane. The diversity of Ca2+ entry pathways and mechanisms of their control are described. At least two different types of Ca2+ entry channels exist: 1. typical highly Ca2+ selective ion channels which might be activated by depletion of intracellular Ca2+ stores (Ca2+ release-activated Ca2+ channels, CRAC), and 2. Non-selective Ca2+ permeable cation channels (NSC). The latter shares many features with an NSC induced by expression of the protein TRPC3. These channels are only weakly operated by store depletion and require a permissive Ca2+ and Ins(1,4,5)P3 concentration in the cytosol. CRAC channels are possible indirectly involved in Ca2+ entry during mechano-stimulation of ECs. After activation of these entry channels, influx of Ca2+ depends on the driving force. The following ion channels play a pivotal role in regulation of the driving force for Ca2+ entry: an inwardly rectifying K+ channel, identified as Kir2.1, a large-conductance, Ca2+ activated K+ channel (hslo) and at least two Cl- channels (a volume regulated Cl- channel, VRAC, and a Ca2+ activated Cl- channel, CaCC). It will be explained how these ion channels interact in the regulation of the long-lasting (plateau-type) increase in [Ca2+]i which mainly controls NO-synthesis and release. Furthermore, it will be demonstrated that Ca2+ oscillations depend on intracellular events rather than Ca2+ entry from the extracellular space. 相似文献
5.
Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue 总被引:1,自引:0,他引:1
The causative factors in muscle fatigue are multiple, and vary depending on the intensity and duration of the exercise, the fibre type composition of the muscle, and the individual's degree of fitness. Regardless of the aetiology, fatigue is characterized by the inability to maintain the required power output and the decline in power can be attributed to a reduced force and velocity. Following high-intensity exercise, peak force has been shown to recover biphasically with an initial rapid (2 min) recovery followed by a slower (50 min) return to the pre-fatigued condition. The resting membrane potential depolarizes by 10-15 mV, while the action potential overshoot declines by a similar magnitude. Following high-frequency stimulation of the frog semitendinous muscle, we observed intracellular potassium [K+]1 decrease from 142 +/- 5 to 97 +/- 8 mM, while sodium [Na+]i rose from 16 +/- 1 to 49 +/- 6 mM. The [K+]i loss was similar to that observed in fatigued mouse and human skeletal muscle, which suggests that there may be a limit to which [K+]i can decrease before the associated depolarization begins to limit the action potential frequency. Fibre depolarization to- 60 mV (a value observed in some cells) caused a significant reduction in the t-tubular charge movement, and the extent of the decline was inversely related to the concentration of extracellular Ca2+. A decrease in intracellular pH (pHi) to 6.0 was observed, and it has been suggested by some that low pH may disrupt E-C coupling by directly inhibiting the SR Ca2+ release channel. However, Lamb at al. (1992) observed that low pH had no effect on Ca2+ release, and we found low pHi to have no effect on t-tubular charge movement (Q) or the Q vs. Vm relationship. The Ca2+ released from the SR plays three important roles in the regulation of E-C coupling. As Ca2+ rises, it binds to the inner surface of the t-tubular charge sensor to increase charge (Q gamma) and thus Ca2+ release, it opens SR Ca2+ channels that are not voltage-regulated, and as [Ca2+]i increases further it feeds back to close the same channels. The late stages of fatigue have been shown to be in part caused by a reduced SR Ca2+ release. The exact cause of the reduced release is unknown, but the mechanism appears to involve a direct inhibition of the SR Ca2+ channel. 相似文献
6.
We have undertaken a systematic study of the nature of quinolone metal complexes formed by electrospray ionization and laser desorption/ion-molecule reactions to evaluate the analytical utility of metal complexation as an alternative to conventional ionization via protonation. Metal ionization with laser-desorbed copper and nickel ions results in addition products of the form (L + Cu+) and (L + Ni+), respectively, where L is the quinolone, whereas addition-elimination products of the form (L + Co(+)-28) are observed when cobalt is used. The elimination of CO in order to form this unusual latter product seems to be favored by the formation of a cyclized structure that is stabilized by intramolecular hydrogen bonding. The CAD patterns of the Ni+ complexes prove to be the most structurally informative, more so than the fragmentation patterns of the protonated quinolones. Quinolone-metal complexes of the type [MII(L-H+)-(dipy)]+, where M is either Cu, Co, or Ni and dipy is 2,2'-dipyridine, are generated by electrospray ionization of a methanolic solution containing a quinolone antibiotic, a transition metal ion salt, and an auxiliary diimine ligand. Upon collisional activation, the ESI-generated complexes dissociate predominantly by loss of CO2, which is also the most common fragmentation pathway for the metal complexes formed through laser desorption/ion-molecule reactions. However, there are fewer structurally diagnostic fragment ions in the CAD spectra of the ESI complexes relative to those of the LD complexes. 相似文献
7.
We studied the gas phase spectrum of the deuterated ethynyl radical C2D in the region between 3196 and 3243 cm-1 using a Faraday LMR spectrometer in combination with a CO overtone laser. The C2D radicals were generated in a dc glow discharge containing helium, deuterium, and acetylene. We observed a hot band between two vibronic 2Pi states with an origin at 3225 cm-1. The lower level is assigned to the first excited bending level of the electronic X ground state. The upper level corresponds to the first excited electronic state A at 3513 cm-1, which was observed previously [J. Mol. Struct. 190, 41-60 (1988)]. This region is subject to strong vibronic interaction, caused by mixing of the electronic X ground state with the A state at 3513 cm-1. From the analysis of the spectra we could determine the orbital g factor of the upper level, which gave important information about the mixing ratios. In addition we were able to derive a precise term value for the first excited bending level of the electronic X ground state. The experimentally derived molecular parameters are compared with theoretically calculated values, obtained by ab initio calculations. Copyright 1998 Academic Press. 相似文献
8.
OBJECTIVE: To investigate the role of phospholipase during the activation and priming of neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by peritoneal dialysis effluent (PDE). DESIGN: Examine the action of 4-hour dwell PDE upon phospholipase activation in the circulating neutrophils obtained from healthy individuals. RESULTS: We have previously reported that PDE stimulated superoxide release by the NADPH oxidase of human neutrophils and primed the response to the bacterial peptide, fMLP (fMetLeuPhe). To elucidate the biochemical mechanisms underlying these observations, we have examined the roles of phospholipases (PL) C, D, and A2, whose activation causes the release of a range of intracellular secondary messengers. Following fMLP stimulation, we observed a rapid activation of both PLC and PLD as well as a small but nonsignificant increase in PLA2 activity. Peritoneal dialysis effluent alone failed to stimulate either PLC or PLD, while pre-incubation with PDE had no affect upon fMLP-induced PLC and PLD activation. However, PDE caused a small but nonsignificant increase in PLA2 activity (which was comparable to that observed with fMLP) and primed the fMLP-induced response. In common with a role for PLA2 and the subsequent release of arachidonic acid (AA), we have demonstrated dose-dependent inhibition of PDE-induced superoxide release by the PLA2 inhibitor mepacrine, as well as activation and priming of the fMLP-induced superoxide generation by AA. CONCLUSIONS: These results imply that PDE-induced NADPH-oxidase activation and priming in human neutrophils is mediated via a PLA2-dependent but PLC- and PLD-independent mechanism. 相似文献
9.
10.
11.
Ribosomes are multifunctional RNP complexes whose catalytic activities absolutely depend on divalent metal ions. It is assumed that structurally and functionally important metal ions are coordinated to highly ordered RNA structures that form metal ion binding pockets. One potent tool to identify the structural surroundings of high-affinity metal ion binding pockets is metal ion-induced cleavage of RNA. Exposure of ribosomes to divalent metal ions, such as Pb2+, Mg2+, Mn2+, and Ca2+, resulted in site-specific cleavage of rRNAs. Sites of strand scission catalyzed by different cations accumulate at distinct positions, indicating the existence of general metal ion binding centers in the highly folded rRNAs in close proximity to the cleavage sites. Two of the most efficient cleavage sites are located in the 5' domain of both 23S and 16S rRNA, regions that are known to self-fold even in the absence of ribosomal proteins. Some of the efficient cleavage sites were mapped to the peptidyl transferase center located in the large ribosomal subunit. Furthermore, one of these cleavages was clearly diminished upon AcPhe-tRNA binding to the P site, but was not affected by uncharged tRNA. This provides evidence for a close physical proximity of a metal ion to the amino acid moiety of charged tRNAs. Interestingly, comparison of the metal ion cleavage pattern of eubacterial 70S with that of human 80S ribosomes showed that certain cleavage sites are evolutionarily highly conserved, thus demonstrating an identical location of a nearby metal ion. This suggests that cations, bound to evolutionarily constrained binding sites, are reasonable candidates for being of structural or functional importance. 相似文献
12.
P Schwarz 《Canadian Metallurgical Quarterly》1994,156(46):6847-6852
This review deals with calcium homeostasis, the calciotropic hormones and the effector organs. The extracellular calcium concentration is influenced by gains or losses of calcium via the bone remodelling system, the kidney and the gut. These fluxes are all influenced by hormones (parathyroid hormone, 1,25-dihydroxy vitamin D and calcitonin) whose secretion is partly governed by the plasma calcium level. 相似文献
13.
14.
RM Corwin 《Canadian Metallurgical Quarterly》1997,72(3-4):451-7; discussion 457-60
Understandably, cattle are raised for profit, as beef and/or dairy. Anything that negates that equation results in a loss to the producer and to the livestock economy. Thus, parasites negatively affect the economy of the industry. Worldwide, gastrointestinal nematode parasites, especially Ostertagia ostertagi, and those of the respiratory tract (Dictyocaulus viviparus) have a potentially major impact on herd health. In the past 10-15 years, anthelmintic (AH) drug development and the strategic use of AH have positively balanced the economic equation, so that overall, parasitism in cattle is often observed or determined to be subclinical or economical. Other control measures, such as better pasture management, are also being developed to enhance herd health and the cattle economy. The determination of the economic impact of parasitism has thus become less apparent, to the extent that measures, such as performance parameters, must be used to measure differences between treated and untreated animals or herds. These include weight gain, reproduction, lactation and forage use. To determine the effectiveness of control measures, field trials are designed to measure these parameters by the demonstration of improved performance. Because these trials are conducted in a competitive mode, results are often debated by competitors and by the scientific community because of study design. Variables must then be taken into consideration in the interpretation of results. It is now well known that, with the generation of new AH and appropriately-timed administration, parasitism of well-managed herds has been reduced to subclinical levels. Thus, we are now in the process of fine-tuning the positive effect of these control measures for enhanced production. Understandably, beef and dairy producers have 'production of high quality commodities' at a cost-effective level as a common goal. Successful cattlemen calculate expenditures and income by line item including veterinary expenses and cost and labor in administration of AH. Return is based on performance. Again, nematode parasites can disturb the equation enough to make production less profitable or even unprofitable. Most USA beef cattle producers believe that worm parasites do have an effect on cattle health and production so that 77% use AH and the market impact is that AH have become integrated into cattle herd health programs. However, to be most cost-effective, programs must be strategic but flexible with scheduling tailored for the region and the cattle operation. Other technologies should eventually provide rapid identification of worm populations by species and numbers and recognition of individual animal response to parasites and inheritance of that trait by their progeny. Computerized programs for analysis of seasonality of the epidemiology of gastrointestinal parasites and of herd performance could predict appropriate timing and cost benefit for control measures. Modes of AH administration are being developed which are more reliable and convenient in terms of delivery and labor. Control measures must also include better pasture management with less impact on the environment and to justify investment in land. In addition, successful producers are better educated, more cost-conscious, consumer-oriented, sensitive to the environment and attuned to the economics of parasitism. 相似文献
15.
Although fluctuations in cytosolic Ca2+ concentration have a crucial role in relaying intracellular messages in the cell, the dynamics of Ca2+ storage in and release from intracellular sequestering compartments remains poorly understood. The rapid release of stored Ca2+ requires large concentration gradients that had been thought to result from low-affinity buffering of Ca2+ by the polyanionic matrices within Ca2+-sequestering organelles. However, our results here show that resting luminal free Ca2+ concentration inside the endoplasmic reticulum and in the mucin granules remains at low levels (20-35 microM). But after stimulation, the free luminal [Ca2+] increases, undergoing large oscillations, leading to corresponding oscillations of Ca2+ release to the cytosol. These remarkable dynamics of luminal [Ca2+] result from a fast and highly cooperative Ca2+/K+ ion-exchange process rather than from Ca2+ transport into the lumen. This common paradigm for Ca2+ storage and release, found in two different Ca2+-sequestering organelles, requires the functional interaction of three molecular components: a polyanionic matrix that functions as a Ca2+/K+ ion exchanger, and two Ca2+-sensitive channels, one to import K+ into the Ca2+-sequestering compartments, the other to release Ca2+ to the cytosol. 相似文献
16.
We previously reported that FTY720 is an efficient inducer of apoptosis in lymphocytes and cultured cell lines. In the present study, HL-60 human promyerocytoma cells also induced apoptosis through in vitro treatment with the drug, demonstrating extensive DNA fragmentation 6 hr after incubation. The major target of FTY720 was the common signalling pathway of apoptosis, since a rapid (< 1 min) increase in the intracellular Ca2+ concentration ([Ca2+]i) was found in the cells treated with the drug. Calcium chelation in the culture medium with EGTA did not affect the [Ca2+]i mobilization. A phospholipase C inhibitor, U73122, inhibited the increase in [Ca2+]i as well as the fragmentation of the nuclear DNA, whereas U73343, a non-effective analogue of U73122, had little effect. These results suggest that FTY720-induced apoptosis is mediated through an activation of phospholipase C and the subsequent release of Ca2+ from intracellular calcium pools. In addition, the treatment of HL-60 with pertussis toxin (PTX) did not inhibit Ca2+ mobilization or apoptosis, suggesting that the activation of phospholipase C is independent of PTX-sensitive G-proteins. 相似文献
17.
The real-time observation of cell movement in acute cerebellar slices reveals that granule cells alter their shape concomitantly with changes in the mode and rate of migration as they traverse different cortical layers. Although the origin of local environmental cues responsible for these position-specific changes in migratory behavior remains unclear, several signaling mechanisms involved in controlling granule cell movement have emerged. The onset of one such mechanism is marked by the expression of voltage-gated ion channels and neurotransmitter receptors in postmitotic cells prior to the initiation of their migration. Granule cells start their radial migration after the expression of N-type Ca2+ channels and the N-methyl-D-aspartate subtype of glutamate receptors on the plasmalemmal surface. Blockade of the channel or receptor activity significantly decreases the rate of cell movement, indicating that the activation of these membrane constituents provides an essential signal for the translocation of granule cells. Another signal that controls the rate of cell migration is embedded in the combined amplitude and frequency components of Ca2+ fluctuations in the somata of migrating granule cells. Interestingly, each phase of Ca2+ fluctuation controls a separate phase of saltatory movement in the granule cells: The cells move forward during the phase of transient Ca2+ elevation and remain stationary during the troughs. Consequently, the changes in the amplitude and frequency components of Ca2+ fluctuations directly affect granule cell movement: Reducing the amplitude or frequency of Ca2+ fluctuations slows down the speed of cell movement, while the enhancement of these components accelerates migration. These findings suggest that signaling molecules present in the local cellular milieu encountered on the migratory route control the shape and motility of granule cells by modifying Ca2+ fluctuations in the soma through the activation of specific ion channels and neurotransmitter receptors. 相似文献
18.
GA Quamme 《Canadian Metallurgical Quarterly》1993,19(4-5):218-225
Magnesium is essentially an intracellular cation, which makes it difficult to evaluate magnesium status. About 1% of total body magnesium is present in serum and interstitial body fluid and only about 1% of the intracellular magnesium is in the free form, Mg2+. Recent studies show that this small fraction of free Mg2+ rapidly changes with the extracellular magnesium. These free Mg2+ levels are carefully controlled within the cell and total cellular magnesium content are maintained at the expense of extracellular fluid and bone magnesium levels. Regulation of magnesium balance is met between intestinal absorption and renal excretion. The excretory side of magnesium balance involves appropriate changes in renal magnesium handling. Present evidence indicates that renal handling of magnesium normally is a filtration-reabsorption process; magnesium is filtered at the glomerulus and reabsorbed along the various segments making up the renal nephron. About 80% of total serum magnesium (0.7-1 mmol/l) is filtered at the glomerular membrane. Of the ultrafilterable magnesium (0.6-0.8 mmol/l) 20-25% is reabsorbed by the proximal tubule, including the convoluted and straight portions. Some 50-60% of the filtered magnesium is reabsorbed in the loop of Henle, specifically by thick ascending limb cells. The terminal nephron segments, including the distal convoluted tubule and collecting ducts, reabsorb only a small portion of the filtered magnesium (about 5-10%). The loop of Henle plays the major role in determining magnesium reabsorption and urinary magnesium excretion. The loop of Henle also is the segment in which the major regulatory factors act to maintain magnesium balance.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.