首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a single-phase unity power factor rectifier, based on a hybrid boost converter, resulting from the integration of a conventional dc–dc boost converter and a switched-capacitor voltage doubler is proposed, analysed, designed and tested. The high-power rectifier is controlled by two feedback loops with the same control strategy employed in the conventional boost-based rectifier. The main feature of the proposed rectifier is its ability to output a dc voltage larger than the double of the peak value of the input line voltage, while subjecting the power switches to half of the dc-link voltage, which contributes to reducing the cost and increasing the efficiency. Experimental data were obtained from a laboratory prototype with an input voltage of 220 Vrms, line frequency of 60 Hz, output voltage of 800 Vdc, load power of 1000 W and switching frequency of 50 kHz. The efficiency of the prototype, measured in the laboratory, was 96.5% for full load and 97% for half load.  相似文献   

2.
This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50–420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50–125, 125–250 and 250–420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.  相似文献   

3.
This article analyses and presents an LLC resonant converter with a high power factor for LCD-TV applications. It integrates the advantages of power factor correction and the LLC resonant converter. It can improve not only power quality but also circuit efficiency. Since the power factor corrector is used in the first stage of the LLC resonant converter, it is suitable for wide input voltage range application. On the basis of the resonant behaviour, zero voltage switching is achieved for the power switches and ZCS is achieved for the rectifier diodes. An experimental prototype of 90–260V rms input and 12V/10A and ?12V/10A outputs with 92.6% efficiency for 32″ LCD-TV application is built in the laboratory to verify the operation principle of the adopted converter.  相似文献   

4.
A buck-boost-type unity power factor rectifier is proposed in this paper. The main advantage of the proposed rectifier over the conventional buck-boost type is that it can perform input power factor correction (PFC) over a wider voltage conversion range. With a single switch, a fast well-regulated output voltage is achieved with a zero-current switch at turn-on. Moreover, the switch voltage stress is independent of converter load variation. The proposed converter is well suited for universal offline PFC applications for a low power range (<150 W ). The feasibility of the converter is confirmed with results obtained from a computer simulation and from an experimental prototype.  相似文献   

5.
ABSTRACT

An interleaved frequency control soft switching converter is studied for solar power or fuel cell power applications. The proposed circuit topology contains two parallel current-fed circuit cells with interleaved pulse-width modulation operation. Thus, the ripple currents at input and output terminals are decreased. In each circuit cell, the proposed current-fed dc-dc converter includes boost circuit and resonant circuit to achieve current ripple-free on low voltage side and less switching losses on active devices. The boost circuit and the resonant circuit have same active devices to decrease power switches. Due to the resonant behaviour, the reverse recovery current loss on secondary diodes is removed. The voltage doubler circuit topology is accomplished on secondary-side to reduce diode counts and conduction loss. The performance and effectiveness of the developed interleaved PWM current-fed converter are verified and confirmed by experiments.  相似文献   

6.
Conventional series resonant converters have researched and applied for high-efficiency power units due to the benefit of its low switching losses. The main problems of series resonant converters are wide frequency variation and high circulating current. Thus, resonant converter is limited at narrow input voltage range and large input capacitor is normally adopted in commercial power units to provide the minimum hold-up time requirement when AC power is off. To overcome these problems, the resonant converter with auxiliary secondary windings are presented in this paper to achieve high voltage gain at low input voltage case such as hold-up time duration when utility power is off. Since the high voltage gain is used at low input voltage cased, the frequency variation of the proposed converter compared to the conventional resonant converter is reduced. Compared to conventional resonant converter, the hold-up time in the proposed converter is more than 40ms. The larger magnetising inductance of transformer is used to reduce the circulating current losses. Finally, a laboratory prototype is constructed and experiments are provided to verify the converter performance.  相似文献   

7.
This paper presents a soft-switching mode rectifier (SSMR) consisting of a power factor correction zero-voltage-transition-pulse-width-modulated (PFC ZVT-PWM) converter and a high-frequency transformer-coupled DC/DC zero voltage switching clamped voltage (ZVS-CV) converter. An easily implemented ZVT soft-switching mechanism is developed to reduce the switching losses and stresses of the power switches in the PFC ZVT-PWM converter. The operations of the proposed SSMR in various modes are analyzed in detail and the associated governed equations are derived. Then accordingly, a quantitative design procedure is developed to find the values of soft-switching circuit components. In the control aspect, the dynamic model of the SSMR is derived and a current waveform controller is designed, such that sinusoidal line current with low harmonics and near unity power factor is obtained. Under this condition, a voltage controller is also designed for yielding good DC output voltage control characteristics. Validity of the designed SSMR is verified experimentally  相似文献   

8.
本电源是基于高频高压交流母线具有多组输出的直流电源,它具有高达200kHz的开关频率,后级的整流电路由于高频交流母线的存在,使得变压器和电感的设计变得简单,滤波电容的选择也更容易。本电源由PFC电路提供400V的高压直流输入,再由MOSFET组成全桥逆变电路,在固定额率的PWM发生电路和IR2110 MOSFET驱动电路作用下,只加—个谐振电感就可实现开关管的零电压开通,可在大大降低开关损耗和噪声的同时实现直流交流的变换。整流部分采用倍流整流电路以提高原边电压的利用率,可输出低压大电流。由于采用肖特基管,—方面可使得二板管的损耗可以接受,另外—方面还避免了采用同步整流电路所面临的电路结构复杂和驱动困难。  相似文献   

9.
This paper presents a zero-voltage-transition (ZVT) boost converter using a soft switching auxiliary circuit for power factor correction (PFC) applications. The improvement over existing topologies lies in the positioning of the auxiliary circuit capacitors and the subsequent reduction in the resonant current and therefore the conduction losses as compared to other similar topologies. The proposed converter operates in two modes - Mode 1 and Mode 2. It is shown in the paper that the converter should be designed using the constraints obtained in Mode 1 to achieve low-loss switching. The converter is analyzed and characteristic curves presented which are then used in a detailed design example. Experimental results from a 250 W, 127 V input laboratory prototype switching at 100 kHz verify the design process and highlight the advantages of the proposed topology. The proposed converter is suitable for single-phase, two stage power factor correction circuits with universal input voltage range and power levels up to 3 kW.  相似文献   

10.
开关电容boost—buck功率因数校正组合开关变换器   总被引:1,自引:0,他引:1  
程红丽 《微电子学》2001,31(5):351-353,359
文章提出了一种基于开关电容网络的boost-buck组合开关变换器,当其输入环节工作在不连续导电模式(DCM)时,具有功率因数校正(PFC)功能,详细分析了这类变换器的工作原理、临界条件、输入输出电压变比以及各器件的应力。实验结果与理论分析相符。  相似文献   

11.
为解决传统三相单开关功率因数校正器输入电流谐波较大的问题,设计了一种新型拓扑结构的三相单开关升压型PFC(Power Factor Correction)电路。通过在Boost电感和整流桥之间插入合适电容构成二阶滤波器,虽然控制算法不变,但可以在保证功率因数不变的前提下优化输入电流THD(Total Harmonic Distortion)。基于对电路原理的简要分析,建立Matlab仿真模型,再以TMS320F28335为控制核心,搭建Boost PFC 变换器的实验平台。仿真和实验均表明该方案可行,实验电路测试的输入电流THD值小于10%,具有实际应用价值。  相似文献   

12.
This paper presents a novel modulation strategy for a power factor corrected (PFC), isolated AC/DC converter derived from the integration of a nonisolated, two switch buck-boost AC/DC converter with an isolated dual active bridge DC/DC converter (2SBBDAB). This strategy, termed discontinuous leading/trailing edge (DLTE) modulation, serves to maximize the duty cycle of the input switch while keeping the current in the buck-boost inductor discontinuous. Hence, the crest factors of the currents in the switching devices are minimized, the input switch is turned on at zero current and the zero-voltage switching ranges of the bridge switches are unaffected by the integration. A conventional isolated, PFC AC/DC converter typically consists of a boost converter cascaded with a forward converter. The ratings required of the power switching devices of the 2SBBDAB employing the DLTE modulation strategy are similar to those required of the conventional design for wide line voltage operation. However, the 2SBBDAB converter has higher line voltage surge immunity than that of the conventional design and, unlike the conventional design, it has inherent inrush current limiting. The DLTE modulation strategy may be applied to the family of converters composed of the two switch buck-boost integrated with half and full-bridge forward converters  相似文献   

13.
A constant-frequency, phase-controlled, series-parallel resonant DC-DC converter is introduced, analyzed in the frequency domain, and experimentally verified. To obtain the DC-DC converter, two identical series-parallel resonant inverters are paralleled and the resulting phase-controlled resonant inverter is loaded by a voltage-driven rectifier. The converter can regulate the output voltage at a constant switching frequency in the range of load resistance from full-load resistance to infinity while maintaining good part-load efficiency. The efficiency of the converter is almost independent of the input voltage. For switching frequencies slightly above the resonant frequency, power switches are always inductively loaded, which is very advantageous if MOSFETs are used as switches. Experimentally results are given for a converter with a center-tapped rectifier at an output power of 52 W and a switching frequency of 127 kHz. The measured current imbalance between the two inverters was as low as 1.2:1  相似文献   

14.
为了降低开关损耗,提高变换器的效率,提出了一种改进的零电流转化软开关无桥功率因数校正电路,实现了变换器主开关管和辅助开关管的零电流导通和零电流关断,有效地减小了导通损耗,提高了电路的效率。详细分析了电路的工作模态、工作条件和主开关管的导通损耗。仿真和实验结果表明,该功率因数校正电路实现了输入电流对输入电压的良好跟踪,功率因数高,谐波含量少,效率较传统的全桥功率因数校正电路有明显的提高。 关键词:全桥;零电流转换;无桥;功率因数校正  相似文献   

15.
王强  李兵  王天施  刘晓琴 《电子学报》2020,48(3):616-620
为改善单相AC-DC-AC变换器的性能,提出了一种单相谐振直流环节零电压开关AC-DC-AC功率变换器拓扑结构,由图腾柱式单相整流器,位于直流环节的辅助谐振电路和单相全桥逆变器组成.利用同一组辅助电路能分别将整流器输出端电压和逆变器输入端电压变化到零,使整流器和逆变器桥臂上的开关器件分别实现零电压切换.分析了电路的工作流程,在1.2kW样机上的实验结果表明开关器件完成了软切换.该拓扑结构对于研发节能型单相AC-DC-AC变换器具有借鉴意义.  相似文献   

16.
无直流电压传感器的单相APFC变换器   总被引:1,自引:0,他引:1  
文章对一种只检测交流输入电压而不需要检测输出直流电压的简化单相PFC变换器进行了理论分析和研究。在构建控制电路时,不需要常规PFC变换器中的输出电压传感器和输入电流传感器。PFC变换器的主电路为整流电路的直流侧接一级Boost电路。在控制电路中,使用电感L、等效负载电阻Rd等电路参数产生正弦电流波形基准,输出电压直接由控制量Kd(=Ed/Ea)来调节。通过控制,可以得到恒定的直流输出电压和与交流输入电压同相位的正弦电流波形。仿真结果证明了该变换器的可行性。  相似文献   

17.
A half-cycle control technique for the parallel resonant power converter operated as a high power factor rectifier is introduced in this paper. Switching of the bridge power transistors is determined such that the bridge input current averaged over a half switching cycle exactly follows the reference proportional to the input voltage. Zero current switching and below-resonance operation are guaranteed, while control of the input current is the fastest possible, regardless of the operating point. In contrast to conventional regulators, the performance is preserved under both small and large signal variations, and also for large variations of the power-stage parameter values. Fast response, stability and robustness are experimentally verified on a 1.4 kW prototype  相似文献   

18.
Choi  H.C. Han  J.W. Youn  M.J. 《Electronics letters》1992,28(17):1592-1594
A novel high frequency switching rectifier, termed the quantum boost series resonant rectifier (QBSRR), is proposed. This rectifier provides the input line AC with a unity power factor. With this proposed scheme, several advantages such as low switching loss and wide output voltage range can be obtained.<>  相似文献   

19.
An integrated zero-voltage-switching (ZVS) DC–DC converter with continuous input current and high voltage gain is proposed. The proposed converter can operate with soft switching, a continuous inductor current and fixed switching frequency. The voltage stress of the power switches is relatively low compared to the output voltage. Moreover, soft-switching characteristic of the proposed converter reduces switching loss of active power switches and raise the conversion efficiency. The reverse-recovery problem of output rectifiers is also alleviated by controlling the current changing rates of diodes with the use of the leakage inductance of a coupled inductor. The operation and performance of the proposed DC–DC converter were verified on an 115?W experimental prototype operating at 100?kHz.  相似文献   

20.
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号