首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Glasses with the composition, (Sm2 O 3) x (ZnO)(40-x)(TeO 2)(60), were prepared by conventional melt quenching method. The density, molar volume, and optical energy band gap of these glasses have been measured. The refractive index, molar refraction and polarizability of oxide ion have been calculated by using Lorentz-Lorentz relations. Optical absorption spectra of these glasses were recorded in the range 300–700 nm at room temperature. The oxide ion polarizabilities deduced from two different quantities, viz. refractive index and optical energy band gap, agree well compared with other glasses. The nonlinear variation of the above optical parameters with respect to samarium dopant has been explained.  相似文献   

2.
Pure and copper doped glasses with composition,x Li 2 O-(40-x)Na 2 O-50B 2 O 3-10Bi 2 O 3,have been prepared over the range 0 ≤ x ≤ 40. The electron paramagnetic resonance (EPR) spectra of Cu2+ ions of these glasses have been recorded in the X-band at room temperature. Spin Hamiltonian parameters have been calculated. The molecular bonding coefficients, α2 and β2, have been calculated by recording the optical absorption spectra in the wavelength range 200–1200 nm. It has been observed that the site symmetry around Cu2+ ions is tetragonally distorted octahedral. The density and glass transition temperature variation with alkali content shows non-linear behaviour. The IR studies show that the glassy system contains BO3 and BO4 units in the disordered manner.  相似文献   

3.
Optical absorption and transmission spectra of (1-x-y)B2O3-xLi2O-yMCI2 (M=Cd, Zn) glasses of varying compositions were recorded in the UV-visible region. From the spectra, various optical parameters such as optical energy gap (E opt), refractive index (n), optical dielectric constant (ɛ′), width of the tail of localized states in the forbidden gap (ΔE), ratio of carrier concentration to the effective mass (N/m*) and the constantB were evaluated. The effects of composition of glasses on these parameters are discussed.  相似文献   

4.
Optical absorption and transmittance spectra of 60B2O3-(40-x)PbO-xMCl2 and 50B2O3-(50-x) PbO-xMCl2 (M = Pb, Cd) (10 ≤x ≤ 20) glasses of varying composition were recorded in the UV-visible region. Various optical parameters such as optical energy gap (E opt), Urbach energy (E e), refractive index (n 0), optical dielectric constant (ε∞), and ratio of carrier concentration to the effective mass (N/m*;) were determined. The variation of optical energy gap with increase in the concentration of PbCl2 or CdCl2 is discussed.  相似文献   

5.
The local structure around Cu2+ ion has been examined by means of electron spin resonance and optical absorption measurements in xLi2O-(40-x)Na2O-50B2O3-10As2O3 glasses. The site symmetry around Cu2+ ions is tetragonally distorted octahedral. The ground state of Cu2+ isd x 2y 2.The glass exhibited broad absorption band near infrared region and small absorption band around 548 nm, which was assigned to the 2B1g2Eg transition.  相似文献   

6.
Mixed lithium–zinc borophosphate glasses were prepared and studied in three compositional series xLi2O–(50−x)ZnO–50P2O5, xLi2O–(50−x)ZnO–10B2O3–40P2O5 and xLi2O–(50−x)ZnO–20B2O3–30P2O5 with x = 0, 10, 20, 30, 40 and 50 mol% Li2O. The obtained glasses were characterized by the measurements of the density (ρ), molar volume (V M), glass transition temperature (T g) and thermal expansion coefficient (α). For the investigation of structural changes 11B and 31P MAS NMR and Raman spectroscopy were applied. The replacement of zinc by lithium in borophosphate glasses slightly decreases V M and T g, while α increases. In Li–Zn metaphosphate glasses the compositional dependence of T g reveals a minimum, while at the borophosphate series T g decreases monotonously with increasing Li2O content. Chemical stability of Li–Zn borophosphate glasses is very good for glasses with x = 030 mol% Li2O. Spectral studies showed in the glass series with 10 mol% B2O3 only the presence of BO4 sites. In the glasses with 20 mol% B2O3 the presence of BO3 and two BO4 sites was revealed in ZnO-rich glasses and only one BO4 site in Li2O-rich glasses; the number of BO3 groups decreases with increasing Li2O content which is ascribed to the formation of P–O–Zn covalent bonds in ZnO-rich glasses.  相似文献   

7.
A.c. conductivity, dielectric constant and loss, and variation with temperature (302–373 K) for four different compositions of V2O5-B2O3 glasses were reported at 9.586 GHz microwave frequency. The quality factor (Q) and attenuation factor (α being the important parameters in the microwave range of applications were also studied. The change in the dielectric constant and loss was observed with composition of V2O5. The maximum loss was found to be at 15V2O5 mol‰ The peak was observed in loss with temperature.  相似文献   

8.
Pellets of ceramic Na1−xKxNbO3 (x = 0, 0.2 and 0.5), were prepared by conventional solid-state reaction method. Prepared samples were characterized using XRD and SEM. The frequency and temperature variation of dielectric constant, loss tangent and dielectric conductivity of prepared samples were measured in the frequency range from 10 KHz-1 MHz, and in the temperature range from 50–250°C for x = 0.2 and 0.5, and between 50 and 480°C for x = 0 compositions. It was observed that the dielectric constant and loss tangent decrease, and conductivity increases with increasing frequency. Near the transition temperature the material shows anomalous behaviour for the observed properties, and the peaks of dielectric constant and loss tangent were observed shifting towards lower temperature with increasing frequency.  相似文献   

9.
Results of microhardness measurements on (1-x-y)(B2O3)-x(Li2O)-y(MCI2), (M=Cd, Zn) glasses, in the applied load range 25–500 g, are presented. The microhardness was found to decrease with increase in load up to 50 g, then it increased and finally attained a practically constant value with increase in load. The effects of composition of the glasses on microhardness are discussed.  相似文献   

10.
We have used a phase field model to study spinodal decomposition in polycrystalline materials in which the grain size is of the same order of magnitude as the characteristic decomposition wavelength (Xsu). In the spirit of phase field models, each grain (i) in our model has an order parameter (η i) associated with it;η i has a value of unity inside the ith grain, decreases smoothly through the grain boundary region to zero outside the grain. For a symmetric alloy of composition,c = 0–5, our results show that microstructural evolution depends largely on the difference in the grain boundary energies, ygb, of A-rich (a) and B-rich (β) phases. If Y gb α is lower, we find that the decomposition process is initiated with an a layer being formed at the grain boundary. If the grain size is sufficiently small (about the same as λsd), the interior of the grain is filled with the β phase. If the grain size is large (say, about 10λSD or greater), the early stage microstructure exhibits an A-rich grain boundary layer followed by a B-rich layer; the grain interior exhibits a spinodally decomposed microstructure, evolving slowly. Further, grain growth is suppressed completely during the decomposition process.  相似文献   

11.
A series of calcium substituted polycrystalline ferrite ceramics with magnetoplumbite structures were synthesized using perfect stoichiometric mixtures of oxides with chemical composition, CaAlxCoxFe12−2xO19 (x = 2−5), by standard ceramic technique. The variation in the values ofH candM s,which depends on the additive content and the temperature, was studied by means of a vibration magnetometer. The strong variation observed in coercivity, saturation magnetization and Curie temperature with chemical composition give rise to the possibility of controlling these properties and hence applying these compounds in the millimeter— microwave range.  相似文献   

12.
Isothermal ac MH (magnetization-field) loops for varying field amplitudes were recorded at 77 K on YBa2(Cu1-xMnx)3O7-δ with x = 0, 0.010, 0.015, 0.020, 0.025, 0.035 and 0.050, YBa2(Cuo.o75Fe0.025)3O7-δ, YBa2(Cu0.075Ni0.025)3O7-δ and YBa2(Cu0.075Zn0.025)3O7-δ samples up to a maximum field amplitude of 80 Oe. Flat band susceptibility, ac losses and flux profiles were deduced from the ac MH loops. The undoped sample exhibited a minimum weak link ac loss and the 5.0% doped sample showed maximum weak link ac loss. Ni and Fe doped samples showed higher granular losses.J cg estimated from the flux profiles decreases monotonically with increasing concentrations of Mn up to 2.5%.  相似文献   

13.
Elastic moduli (Y, η), Poisson’s ratio (σ), microhardness (H) and some thermodynamical parameters such as Debye temperature (θD), diffusion constant (D i),latent heat of melting (ΔH m) etc of PbO-Al2O3-B2O3 glasses doped with rare earth ions viz. Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Er3+ and Yb3+, are studied as functions of temperatures (in the temperature range 30–200°C) by ultrasonic techniques. All these parameters are found to increase with increasing atomic numberZ of the rare earth ions and found to decrease with increasing temperature of measurement. From these results (together with IR spectra of these glasses), an attempt is made to throw some light on the mechanical strength of these glasses.  相似文献   

14.
Polycrystalline Li0.5-x/2CdxFe2.5-x/22O4 ferrites wherex = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 were prepared by a double sintering ceramic technique and characterized by X-ray diffraction and scanning electron microscopy (SEM). The lattice parameter is found to increase monotonically with the cadmium content. It is explained in terms of the sizes of component ions. The grain size of the samples increases up tox = 0.3 and then it decreases for higher values ofx. A similar trend is observed in the variation of Ms with Cd2+ content. The initial permeability (μi) is however found to increase continuously withx. The increase in μi is attributed to decrease of anisotropy constant K1 and higher grain size of the samples.  相似文献   

15.
Temperature and frequency dependence of a.c. conductivity have been studied in glassy Se100- x Te x(x = 10, 20 and 30) over different range of temperatures and frequencies. An agreement between experimental and theoretical results suggests that the a.c. conductivity behaviour of selenium-tellurium system (Se100- xTex)can be successfully explained by correlated barrier hopping (CBH) model. The density of defect states has been determined using this model for all the glassy alloys. The results show that bipolaron hopping dominates over single-polaron hopping in this glassy system. This is explained in terms of lower values of the maximum barrier height for single-polaron hopping. The values of density of charged defect states increase with increase in Te concentration. This is in agreement with our previous results obtained from SCLC measurements.  相似文献   

16.
The powerful framework of cluster expansion- cluster variation methods (CE- CVM) expresses alloy free energy in terms of energy (model) parameters, macroscopic variables (composition and temperature) and microscopic variables (correlation functions). A simultaneous optimization of thermodynamic and phase equilibria data using CE- CVM is critically dependent on giving good initial values of energy parameters, macroscopic and microscopic variables, respectively. No standard method for obtaining the initial values of the energy parameters is available in literature. As a starting point, a method has been devised to estimate the values of energy parameters from consolute point (miscibility gap maximum) data. Empirical relations among energy parameters, temperature (T c), composition (x c) andd 2 T/dx2 at the consolute point, have been developed using CE- CVM free energy functions for bcc and fcc structures in the tetrahedron and tetrahedronoctahedron approximations, respectively. Thus from the observed data ofT c,x c andd 2 T/dx2 in the above relations, good initial values of energy parameters can be obtained. Further, a necessary modification to the classical NR method for solving simultaneous nonlinear/transcendental equations with a double root in one variable and a simple root in the other has been presented.  相似文献   

17.
Using a Mori-Zwanzig projection operator procedure the relaxation function theory of doped two-dimensional Heisenberg antiferromagnetic (AF) system in the paramagnetic state is presented taking into account the hole subsystem as well as both the electron and AF correlations. At low temperatures the main contribution to the nuclear spin–lattice relaxation rate, 63(1/T 1), of plane 63Cu, arises from the AF fluctuations, and 17(1/T 1), of plane 17O, has the contributions from the wave vectors in the vicinity of (π,π) and small q ∼ 0. The effects of thermal spin-wave damping Γ q on 17(1/T 1) in lightly doped regime are investigated, suggesting either a polynomial of up to third order (not simply (T/J)3) or exponential temperature dependence of Γ q at low temperatures. It is shown that the theory is able to explain the main features of experimental data on temperature and doping dependence of 17,63(1/T 1) in the paramagnetic state of La2− x Sr x CuO4 compounds.  相似文献   

18.
The electrical properties of xFe2O3−(100 −x) Na2P2O5 glasses with x = 0, 6, 12, 18 and 24 mol% have been studied in the temperature range from 323 to 573 K. The dc conductivity was found to decrease as the iron content increases while the activation energy increases with increasing iron content in the glasses. In the high—temperature regime above θD/2 (θD is the Debye temperature), the Mott model of small polaron hopping (SPH) between nearest neighbors is consistent with the conductivity data. The electron—phonon interaction coefficient γP was very large (66.74–97.60). The electrical conduction of the glasses was confirmed to be non-adiabatic small polaron hopping. The physical parameters obtained by fitting the experimental results to these models are consistent with glass compositions.  相似文献   

19.
Optical properties of chlorophosphate glasses of the type 50P2O5−30Na2HPO4−20RCl (R = potassium and lead) activated by 0.1 and 0.5 mol% of Pr3+ and Nd3+ have been investigated. Optical band gaps (E opt)have been reported for 0.1 and 0.5 mol% concentrations of Pr3+ and Nd3+ doped potassium and lead chlorophosphate glasses. Energy levels and optical transitions of Pr3+ and Nd3+ are assigned. Spectroscopic parameters (E 1, E2,E 34f and α), spectral intensities (f expt), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) and radiative lifetimes (ΤR) are correlated for 0.1 and 0.5 mol% concentrations of these two ions in potassium and lead chlorophosphate glasses.  相似文献   

20.
Glasses of the 0.5Er3+/2.5Yb3+ co-doped (40Bi2O3–20GeO2–(30 − x)PbO–xZnO–10Na2O system where x = 0.0, 5, 10, 15, 20, 25, and 30 mol%) have been characterized by FT-IR spectroscopy measurements to obtain information about the influence of ZnO-substituted PbO on the local structure of the glass matrix. The density and the molar volume have been determined. The influences of the ZnO-substituted PbO on the structure of glasses have been discussed. The dc conductivity measured in the temperature range 475–700 K obeys Arrhenius law. The conductivity decreases while the activation energy for conduction increases with increase ZnO content. The optical transmittance and reflectance spectrum of the glasses have been recorded in the wavelength range 400–1100 nm. The values of the optical band gap E opt for all types of electronic transitions and refractive index have been determined and discussed. The real and imaginary parts ε1 and ε2 of dielectric constant have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号