首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freeze-dried mixed starters, freeze-dried wheat sourdough and mixed fresh-cell starters made withLactobacillus sanfrancisco CBI,L. plantarum DC400 andSaccharomyces cerevisiae 141 and/orS. exiguus M14 were used for leavening wheat doughs, and their microbiological, biochemical and breadmaking characteristics were compared with those of Italian traditional doughs produced by baker's yeast. All the doughs fermented with starters had more balanced microbiological and biochemical characteristics than dough started with baker's yeast in which alcoholic fermentation end-products largely predominated. By using starters, the greatest lactic acid bacteria cell number and acetic acid production, were achieved, along with more complete profiles of volatile compounds and greater structural stability of fermented doughs. Fresh-cell starters showed higher microbial functionality and represented the only way to enrich the doughs withS. exiguus M14, some of which survived the freeze-drying process. No differences were detected between the two different types of freeze-dried starters and the subsequent use (10 times) of doughs initially produced with freezedried starters eliminated initial differences in the microbial functionality with respect to fresh-cell starters.  相似文献   

2.
The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.  相似文献   

3.
The aim of the present study was the microbiological and technological characterization of laboratory- made sourdoughs for use in barley-flour-based bread-making. A defined multi-strain starter culture consisting of selected lactic acid bacteria (LAB) and yeasts from wheat sourdoughs was inoculated into three flour–water mixtures, composed of: (i) 100% wheat flour (ii) 50% wheat flour and 50% hull-less barley flour (composite flour); (iii) 100% hull-less barley flour. After two months of continuous propagation, the chemical characteristics of the three sourdoughs were investigated by measuring: pH, total titratable acidity and concentrations of various microbial metabolites by HPLC (i.e. lactic, acetic, phenyllactic and butyric acids and diacetyl). The microbial traits were studied through viable counts, isolation and typing of LAB and yeasts and PCR-DGGE analyses. Only Saccharomyces cerevisiae and Lactobacillus plantarum were detectable in the sourdoughs together with other lactobacilli species which were different depending on the type of flour blend used. The molecular typing of the isolates highlighted that only a few strains among those initially inoculated prevailed. The volume increases of the three types of sourdough were also investigated and a correlation was seen between an increase in the barley flour content and a reduction in the dough volume.  相似文献   

4.
A total of 167 yeast and 136 lactic acid bacteria strains were isolated from spontaneously fermented wheat sourdoughs from two regions of Greece, namely Thessaly and Peloponnesus. Identification of the isolates exhibited dominance of Torulaspora delbrueckii with sporadic presence of Saccharomyces cerevisiae and, regarding the lactic acid bacteria, dominance of Lactobacillus sanfranciscensis in the sourdoughs from Thessaly and Lb. plantarum subsp. plantarum in the sourdoughs from Peloponnesus. The latter was accompanied by Pediococcus pentosaceus as secondary microbiota. None of the above mentioned strains exhibited amylolytic, lipolytic or proteolytic activities, and none of the lactic acid bacteria strains produced antimicrobial compounds.  相似文献   

5.
Lactobacillus sanfrancisco CB1 and Lactobacillus plantarum DC400 were the most proteolytic and amylolytic strains studied. Breads started with LAB and yeasts had higher volumes than the baker's yeast-started bread. One bread with the highest initial firmness (Saccharomyces cerevisiae 141- L . plantarum DC400 starter) had the lowest final firmness. Breads produced with LAB showed the lowest enthalpy throughout 144 h. After 24 h storage the associations of S. cerevisiae 141 and L. sanfrancisco CB1 or L. plantarum DC400 gave a very low percentage increase of enthalpy compared to that from yeast alone. The enthalpy increased markedly when other LAB, neither proteolytic nor amylolytic, were used.  相似文献   

6.
In this study, four different laboratory scale gluten-free (GF) sourdoughs were developed from buckwheat or teff flours. The fermentations were initiated by the spontaneous biota of the flours and developed under two technological conditions (A and B). Sourdoughs were propagated by continuous back-slopping until the stability was reached. The composition of the stable biota occurring in each sourdough was assessed using both culture-dependent and -independent techniques. Overall, a broad spectrum of lactic acid bacteria (LAB) and yeasts species, belonging mainly to the genera Lactobacillus, Pediococcus, Leuconostoc, Kazachstania and Candida, were identified in the stable sourdoughs. Buckwheat and teff sourdoughs were dominated mainly by obligate or facultative heterofermentative LAB, which are commonly associated with traditional wheat or rye sourdoughs. However, the spontaneous fermentation of the GF flours resulted also in the selection of species which are not consider endemic to traditional sourdoughs, i.e. Pediococcus pentosaceus, Leuconostoc holzapfelii, Lactobacillus gallinarum, Lactobacillus vaginalis, Lactobacillus sakei, Lactobacillus graminis and Weissella cibaria. In general, the composition of the stable biota was strongly affected by the fermentation conditions, whilst Lactobacillus plantarum dominated in all buckwheat sourdoughs. Lactobacillus pontis is described for the first time as dominant species in teff sourdough. Among yeasts, Saccharomyces cerevisiae and Candida glabrata dominated teff sourdoughs, whereas the solely Kazachstania barnetti was isolated in buckwheat sourdough developed under condition A. This study allowed the identification and isolation of LAB and yeasts species which are highly competitive during fermentation of buckwheat or teff flours. Representatives of these species can be selected as starters for the production of sourdough destined to GF bread production.  相似文献   

7.
The aim of this study was to investigate the production of biogenic amines (BA), histamine and tyramine by some probiotic lactic acid bacteria (LAB). Fifteen strains representing six LAB species were screened qualitatively by growing them in a decarboxylase medium. Quantitative analysis was carried out by HPLC analysis with direct derivatization of acid extracts. Lactobacillus casei (TISTR 389) and Lactobacillus delbrueckii subsp. bulgaricus (TISTR 895) were found to produce BA. The highest levels of histamine (1820.9 ± 3.5 mg L?1) and tyramine (5486.99 ± 47.6 mg L?1) formation were observed for the TISTR 389 strain, while TISTR 895 produced only histamine (459.1 ± 0.63 mg L?1) in the decarboxylase broth. Biogenic amine potential was not observed for the Lactobacillus acidophilus, Lactobacillus lactis subsp. lactis, Lactococcus lactis subsp. lactis, and Lactobacillus plantarum strains studied. This study confirmed that BA formation is strain dependent and not related to the species. Therefore, careful screening for amino acid decarboxylase activity is recommended before selecting LAB as appropriate starter or probiotic strains in food and dairy industry.  相似文献   

8.
Sourdough is typically characterized by the complex microbial communities mainly comprising of yeasts and lactic acid bacteria (LAB). The objective of this study was to explore the microbiota of Chinese traditional sourdoughs collected from different areas of China using culture‐dependent and denaturing gradient gel electrophoresis (DGGE) methods. A total of 131 yeasts, 2 molds, and 106 LAB strains were isolated and identified. Based on the culture‐dependent analysis, the populations of yeasts and LAB were at the level of 105 to 107 and 106 to 107 cfu/g, respectively. Similarly, the results of RT‐qPCR showed that the values of total yeasts and LAB populations were in the range of 106 to 107 and 107 to 108 copies/g, respectively. Using culture‐dependent method, a total of 7 yeasts, 2 molds and 7 LAB species were identified. Results showed that Saccharomyces cerevisiae and Lactobacillus plantarum were the predominant species among the yeasts and LAB microflora. Similarly, using PCR‐DGGE approach, 7 yeasts, 1 mold and 9 LAB species were detected. The yeast, S. cerevisiae, represented the predominant, while the yeast Candida tropicalis represented the subdominant species of the yeast community. Among the LAB community, Lactobacillus sanfranciscensis was the predominant species, while Lactococcus qarvieae, Enterococcus faecium, Lactobacillus delbrueckii and Enterococcus cecorum were among the less dominant species.  相似文献   

9.
The use of sourdough in wheat and rye breads has been extensively studied; however, little is known about its potential effect when baking oat bread. Consequently, the impact of sourdough on oat bread quality was investigated. Two different sourdoughs were prepared from wholegrain oat flour without the addition of starter cultures, by continuous propagation at 28 (SD 28) or 37 °C (SD 37) until the composition of the lactic acid bacteria remained stable. The dominant LAB were identified by sequence analysis of the 16S rDNA isolated from pure cultures. LAB from SD 28 belonged to the species Leuconostoc argentinum, Pedicoccus pentosaceus and Weissella cibaria, while Lactobacillus coryniformis dominated SD 37. The isolated LAB were further used as starter cultures for the production of oat sourdoughs. Fundamental rheology revealed softening of the sourdoughs compared to non-acidified and chemically acidified controls, which could not be attributed to proteolytic activity. Incorporation of oat sourdough into an oat bread recipe resulted in significantly increased loaf-specific volume as well as improved texture, independent of addition level or sourdough type. Overall, the results of this study show that sourdoughs containing lactic acid bacteria isolated from oats have the potential to enhance oat bread quality.  相似文献   

10.
The effect of select parameters (i.e., rye flour ash content, temperature, and dough yield) of the sourdough fermentation on the fermentation activity of different starter cultures (lactic acid bacteria Lactococcus lactis ssp. Lactis, Weissella confusa, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus helveticus, and yeast Kluyveromyces marxianus subsp. Marxianus) was determined. The major metabolic end products of fermentation (D, L-lactic acid, acetic acid, ethanol and glycerol) and the evolution of total phenolic content and folic acid during bread making were measured. Lactobacillus helveticus and Kluyveromyces marxianus allowed obtaining sourdoughs with the highest lactic acid/acetic acid ratios. The mixed starter culture with Lactococcus lactis and Saccharomyces cerevisiae generated the most important quantities of D/L lactic acid. The maximum values of ethanol concentration were obtained in case of the sourdoughs from whole rye flour fermented at lower temperature (30°C) with mixed starter cultures containing Sacchomyces cerevisiae. The fermentation process and type of starter culture are also tools to increase the bioactive compounds, enabling the increase of the phenolic content of the sourdough.  相似文献   

11.
Flavour of type II sourdoughs is influenced by the ingredients, processing conditions, and starter culture composition. It is, however, not fully clear to what extent different sourdough lactic acid bacteria (LAB) contribute to flavour. Therefore, two types of flour (rye and wheat) and different LAB starter culture strains were used to prepare sourdoughs, thereby leaving the yeast microbiota uncontrolled. All LAB starter culture strains tested were shown to be prevalent and to acidify the flour/water mixture to pH values between 3.1 and 3.9 after 24 h of fermentation. Multiple aldehydes, alcohols, ketones, and carboxylic acids were produced by the sourdough-associated microbiota throughout the fermentation period. Based on the organoleptic evaluation of breads produced with these sourdoughs, five LAB strains were selected to perform prolonged wheat and rye fermentations as to their capacity to result in an acidic (Lactobacillus fermentum IMDO 130101, Lactobacillus plantarum IMDO 130201, and Lactobacillus crustorum LMG 23699), buttermilk-like (Lactobacillus amylovorus DCE 471), or fruity flavour (Lactobacillus sakei CG1). Upon prolonged fermentation, higher metabolite concentrations were produced. For instance, L. sakei CG1 produced the highest amounts of 3-methyl-1-butanol, which was further converted into 3-methylbutyl acetate. The latter compound resulted in a fruity banana flavour after 48 h of fermentation, probably due to yeast interference. Rye fermentations resulted in sourdoughs richer in volatiles than wheat, including 3-methyl-1-butanol, 2-phenylethanol, and ethyl acetate.  相似文献   

12.
The microbiota of four industrial French sourdoughs (BF, GO, VB and RF) was characterized by PCR temporal temperature gel electrophoresis (TTGE). The TTGE technique reveals differences in the 16S rDNA V6–V8 regions of these bacteria. DNA was extracted directly from sourdough samples. A specific TTGE fingerprint was determined for 30 bacterial species, including members of the genera Lactobacillus, Leuconostoc and Weissella, all known to be present in sourdough.These sourdoughs contain different species of lactic acid bacteria (LAB) depending on ecological conditions prevailing in the different sourdough fermentations. Only a few LAB species were found to be competitive and became dominant. Lactobacillus sanfranciscensis was observed as the most frequently found species. In sourdough GO, L. sanfranciscensis, Lactobacillus panis and two new species, Lactobacillus nantensis and Lactobacillus hammesii, were detected. Sourdough BF contain L. sanfranciscensis, Lactobacillus spicheri and Lactobacillus pontis. In sourdough VB, which differed in the process temperature, we identified exclusively L. sanfranciscensis and Leuconostoc mesenteroïdes subsp. mesenteroïdes. Lactobacillus frumenti, L. hammesii and Lacobacillus paralimentarius became the predominant species in sourdough RF. Compared with conventional bacteriological methods, the use of this new molecular approach to analyze the sourdough ecosystem should therefore allow a more complete and rapid assessment of its specific microbiota.  相似文献   

13.
The objective of this study was to investigate the effect of starter culture addition on proteolysis of Thai fermented sausages. Sausages inoculated with six different external starter cultures—Pediococcus pentosaceous, Pediococcus acidilactici, Weissella cibaria, Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus sakei—were compared with naturally fermented sausages. The results of microbiological analysis indicated that the dominance of lactic acid bacteria (LAB) could inhibit the growth of pathogens and spoilage. Proteolysis was observed during fermentation by the reduction of myofibrillar and sarcoplasmic proteins and the increase in nonprotein nitrogen (NPN) and total free amino acids. The highest increase in concentration of NPN and free amino acids was obtained from sausages inoculated with LAB. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed a similar pattern of proteolysis of sarcoplasmic proteins in all sausages, while that of the inoculated sausages with L. plantarum, L. pentsus, and L. sakei exhibited increased degradation of myofibrillar protein bands at 200 and 45 kDa.  相似文献   

14.
This study investigated the probiotic characteristics of lactic acid bacteria (LAB) isolated from 14 Malaysian fermented food or milk products. In total, 22.3% (121 of 542) of the LAB isolated from the local fermented products exhibited antibacterial activity against Micrococcus luteus. Twelve LAB that demonstrated better antibacterial activity against M. luteus as compared to a commercial strain Lactobacillus casei strain Shirota (LABPC) were selected for further characterisation. Based on 16S rRNA gene sequence, the LAB were identified as pediococci (seven) and lactobacilli (five). All 12 LAB showed bile tolerance, but only eight were acid tolerant at pH ≥ 3.0. The highest level of adhesion to HT‐29 cells was observed among the Lactobacillus sp. LAB 1 and 10. The LAB also showed antimicrobial activity against Escherichia coli and Staphylococcus aureus through the production of organic acids. LAB isolated from Malaysian fermented food and milk products, especially fermented tapioca, contains potential probiotic candidates.  相似文献   

15.
The microflora of 25 wheat sourdoughs from the Apulia region, Southern Italy, was characterized. The sourdoughs were mainly produced from Triticum durum wheat. The number of lactic acid bacteria and yeasts ranged from ca. log 7.5 to log 9.3 colony forming units (cfu)/g and from log 5.5 to log 8.4 cfu/g, respectively. About 38% of the 317 isolates of lactic acid bacteria were identified by conventional physiological and biochemical tests. Phenotypic identification was confirmed by 16S rDNA and 16S/23S rRNA spacer region PCR. Overall, 30% of the isolates were identified as Lactobacillus sanfranciscensis, 20% as Lb. alimentarius, 14% as Lb. brevis, 12% as Leuconostoc citreum, 7% as Lb. plantarum, 6% as Lactococcus lactis subsp. lactis, 4% as Lb. fermentum and Lb. acidophilus, 2% as Weissella confusa and 1% as Lb. delbrueckii subsp. delbrueckii. Some of these species have not been previously isolated from sourdoughs. Since bakers yeast is widely used in sourdough production, Saccharomyces cerevisiae was largely found. The phenotypical relationships within the main lactic acid bacteria identified were established by using cluster analysis. A microbial map of the 25 sourdoughs was plotted showing characteristic associations among lactic acid bacteria and differences in the lactic acid bacteria species which were mainly due to the species of wheat flour, use of bakers yeast and type of bread.  相似文献   

16.
Abstract: In this study, functional lactic acid bacteria (LAB) specific for vegetable fermentation were screened from Chinese sauerkraut brine by designing purpose media. The selected LAB strains showed excellent tolerance to high concentrations of bile salt and acids. They can also survive passage through the simulated gastric fluid and may be able to reach to the intestine. Through the performance measurements of vegetable fermentation, one of these strains, NCU116 was found to have the best fermentation ability, and further subjected to a series of analyses including identification of physiological and biochemical characteristics, 16S rDNA and pheS sequencing. Taken together, the strain NCU116 was identified as Lactobacillus plantarum subsp. plantarum. These results laid a good foundation for the fermentation research in the future.  相似文献   

17.
采用5种蔬菜黄瓜、豆角、莴苣、红薯、青椒制作泡菜,对发酵过程中菌落总数、pH、总酸、还原糖的变化进行了测定;以产酸量为指标从5种泡菜中分离、培养和鉴定乳酸菌,并进行了益生特性的研究。结果表明,5种蔬菜发酵过程中菌落总数的总体变化趋势为先升高后降低;pH皆表现为持续下降到平稳的趋势,发酵的总酸度最后都能达到1.6%以上;黄瓜、莴苣、青椒和豆角泡菜汁中还原糖的含量一直较低,而红薯泡菜汁中的还原糖含量呈现先升后降的趋势。5种蔬菜中分离鉴定出植物乳杆菌14株;乳酸乳球菌乳脂亚种1株(O-E1);食窦魏斯氏菌2株(O-M7和O-M11)。其中,植物乳杆菌和乳酸乳球菌乳脂亚种具有较好的酸耐受性;O-S44、O-S49、W-11三个菌株有较好的降胆固醇能力,胆固醇脱除率分别为30.9%、19.88%和8.24%;所有菌株均无产GABA能力。   相似文献   

18.
A real-time PCR system with 16S rRNA gene-targeted group-specific primers was developed to quantitatively detect lactic acid bacteria (LAB) of the genera Lactobacillus, Leuconostoc, Pediococcus, and Weissella in different types of commercially available dried sourdoughs. Despite a high degree of degradation in the DNA isolated from the doughs, the 341-bp 16S rRNA gene fragment of the sourdough LAB biota could specifically be amplified. For dried sourdoughs, the resulting calculated LAB cell counts were determined to be up to 3.7 × 107 cells/g fresh dough, whereas in non-fermented dough acidifiers, used as a control, the calculated LAB cell counts did not exceed 3.6 × 104 cells/g fresh dough. Moreover, the effect of low pH and/or high lactic acid concentrations prevailing in the doughs on the detectability of LAB cells in spray- and roller-dried sourdoughs by PCR was investigated. Drying of non-acidified sourdoughs still permitted to detect the LAB cells by PCR, whereas drying of acidified doughs reduced the detectable cell counts by approximately 5 (spray dried) and 2 (roller dried) orders of magnitudes. Incubation of acidified doughs for 24 h did not affect the detectability of LAB cells in spray-dried doughs but further reduced the detectable cell counts in roller-dried doughs by additional 2 orders of magnitude.  相似文献   

19.
The use of sourdough in wheat and rye breads has been extensively studied; however, little is known about its potential effect when baking oat bread. Consequently, the impact of sourdough on oat bread quality was investigated. Two different sourdoughs were prepared from wholegrain oat flour without the addition of starter cultures, by continuous propagation at 28 (SD 28) or 37 °C (SD 37) until the composition of the lactic acid bacteria remained stable. The dominant LAB were identified by sequence analysis of the 16S rDNA isolated from pure cultures. LAB from SD 28 belonged to the species Leuconostoc argentinum, Pedicoccus pentosaceus and Weissella cibaria, while Lactobacillus coryniformis dominated SD 37. The isolated LAB were further used as starter cultures for the production of oat sourdoughs. Fundamental rheology revealed softening of the sourdoughs compared to non-acidified and chemically acidified controls, which could not be attributed to proteolytic activity. Incorporation of oat sourdough into an oat bread recipe resulted in significantly increased loaf-specific volume as well as improved texture, independent of addition level or sourdough type. Overall, the results of this study show that sourdoughs containing lactic acid bacteria isolated from oats have the potential to enhance oat bread quality.  相似文献   

20.
L-J Yin    C-L Pan    S-T Jiang 《Journal of food science》2002,67(2):786-792
ABSTRACT: To improve the functionality and quality of seafood, mackerel minces were fermented with lactic acid bacteria (LAB) ∼ Lactobacillus plantarum CCRC10069, Lactococcus lactis subsp. lactis CCRC 12315, Lactobacillus helveticus CCRC 14092, or their combination at 37 °C. Rapid growth of LAB, decline in pH, suppress of main microflora, increases in whiteness, Hunter L, nonproteinous nitrogen, sensory quality, and free amino acids related to taste were observed. However, VBN of samples fermented with LAB were still d ≤ 25 mg/100g after 36 h fermentation. SDS-PAGE indicated the obvious degradation of water- and salt-soluble muscle proteins after 12 h fermentation. Animal test demonstrated the LAB-fermented mince has the functionality on reduction of blood pressure, glucose, and total cholesterol of SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号