首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is aimed at evaluating the behaviour of small cracks emanating from notches in the Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on prismatic specimens with a central hole. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 56.6 and 100% of the 0.2% yield stress of the material. Microstructural effects were discussed. To this purpose a specific device based on the ‘in situ’ detection of cracks by photomicroscopy was developed. Corresponding results were analysed quantitatively considering the effect of the yielded region at the notch tip by elastic–plastic finite element modelling. Furthermore, information regarding the sites of fatigue crack initiation and propagation path were discussed on the basis of careful fractographic analysis of the specimens. The importance of the two phase α, β microstructure on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. Mechanically and microstructurally long cracks were correlated by linear‐elastic fracture mechanics.  相似文献   

2.
The present paper is aimed at investigating the behaviour of fatigue cracks emanating from edge-notches for two different microstructures of the Ti-6246 alloy, produced by two specific thermo-mechanical treatments and defined as β-annealed and β-processed, respectively. Pulsating four point bending tests were performed on double-edge-notched specimens. The initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material’s yield stress. Plastic deformation at the notch tip initially produced a local stress redistribution followed by elastic shake down due to the high cyclic strain hardening rates exhibited by both microstructures, as confirmed by finite element modelling. Crack closure effects, measured by an extensometric technique, and variations in crack aspect ratio were considered in the ΔK calculation. The obtained crack growth rate data were compared with those of long cracks measured on standard C(T) specimens as well as of microcracks measured on round, unnotched S-N type of specimens to evaluate the intrinsic fatigue crack propagation resistance of the two microstructures. The contribution of notch plasticization to crack closure was estimated by finite element modelling.  相似文献   

3.
Fatigue crack growth behaviours of the titanium alloy Ti‐6Al‐4V, with two different microstructures, at different maximum stresses were identified by digital image correlation technique. Full‐field strains were monitored around fatigue cracks after consecutive cycles in fatigue crack growth experiments. Results indicated that the Ti‐6Al‐4V alloy with a bi‐modal microstructure had a better fatigue resistance than that with a primary‐α microstructure. Typical behaviours of small cracks and the evolution of multi‐scale fatigue cracks were clarified. The strain accumulations around the micro‐notch and fatigue crack increased with increasing number of load cycles. On the basis of von Mises strain mapping, it was found that crack growth rate could be characterized by crack‐tip plastic zone size.  相似文献   

4.
In this paper, the small fatigue crack behavior of titanium alloy TC4 at different stress ratios was investigated. Single‐edge‐notch tension specimens were fatigued axially under a nominal maximum stress of 370 MPa at room temperature. Results indicate that fatigue cracks in TC4 initiate from the interface between α and β phases or within α phase. More than 90% of the total fatigue life is consumed in the small crack initiation and growth stages. The crack growth process of TC4 can be divided into three typical stages, ie, microstructurally small crack stage, physically small crack stage, and long crack stage. Although the stress ratio has a significant effect on the total fatigue life and crack initiation life at constant σmax, its effect on crack growth rate is indistinguishable at R = ?0.1, 0.1, and 0.3 when crack growth rate is plotted as a function of ?K.  相似文献   

5.
ABSTRACT The fatigue crack growth behaviour of 0.47% carbon steel was studied under mode II and III loadings. Mode II fatigue crack growth tests were carried out using specially designed double cantilever (DC) type specimens in order to measure the mode II threshold stress intensity factor range, ΔKIIth. The relationship ΔKIIth > ΔKIth caused crack branching from mode II to I after a crack reached the mode II threshold. Torsion fatigue tests on circumferentially cracked specimens were carried out to study the mechanisms of both mode III crack growth and of the formation of the factory‐roof crack surface morphology. A change in microstructure occurred at a crack tip during crack growth in both mode II and mode III shear cracks. It is presumed that the crack growth mechanisms in mode II and in mode III are essentially the same. Detailed fractographic investigation showed that factory‐roofs were formed by crack branching into mode I. Crack branching started from small semi‐elliptical cracks nucleated by shear at the tip of the original circumferential crack.  相似文献   

6.
Fatigue crack growth behaviour of Ti–6Al–2Zr–1.5Mo–1.5V (VT-20 a near-α Ti alloy) was studied in lamellar, bimodal and acicular microstructural conditions. Fatigue crack growth tests at both increasing and decreasing stress intensity factor range values were performed at ambient temperature and a loading ratio of 0.3 using compact tension samples. Lamellar and acicular microstructures showed lower fatigue crack growth rates as compared to the bimodal microstructure due to the tortuous nature of cracks in the former and the cleavage of primary α in the latter. The threshold stress intensity factor range was highest for acicular microstructure.  相似文献   

7.
Fatigue crack growth behaviours in different welding zones of laser beam welded specimens were investigated using central crack tension specimens for 6156 aluminium alloy under constant amplitude loading at nominal applied stress ratio R = 0.5, 0.06, ?1. The experimental results showed that base metal (BM) exhibited superior fatigue crack resistance compared to weld metal (WM) and heat‐affected zone (HAZ). Crack growth resistance of WM was the lowest. The exponent m values for BM and HAZ at different stress ratios are close and around 2.6, while m for WM at different stress ratio is around 4.7. The discrepancy between crack growth rates for WM and BM is more evident with increasing stress ratio, while it is a little change for HAZ and BM. Change of the microstructure in WM deteriorates the resistance of fatigue crack growth compared to BM. It was mainly due to grain boundary liquation and dissolving of second‐phase particles in the weld region. It was also found that the variety of fatigue crack resistance for different welding zones is in conformity with the change of hardness. BM with the highest hardness exhibited the maximum resistance for fatigue crack, and WM with the lowest hardness exhibited the minimum fatigue crack resistance.  相似文献   

8.
Prediction model for the growth rates of short cracks based on Kmax‐constant tests with M(T) specimens The fatigue crack growth behaviour of short corner cracks in the Aluminium alloys Al 6013‐T6 and Al 2524‐T351 was investigated. The aim was to determine the crack growth rates of small corner cracks at stress ratios of R = 0.1, R = 0.7 and R = 0.8 and to develop a method to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T)‐specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The pre‐cracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a Focussed Ion Beam. The results of the fatigue crack growth tests with short corner cracks were compared with long fatigue crack growth test data. The short cracks grew at ΔK‐values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK‐values and the same stress ratios. A model was developed on the basis of Kmax‐constant tests with long cracks that gives a good and conservative prediction of the short crack growth rates.  相似文献   

9.
The fatigue crack growth behavior of γ-based titanium aluminides (TiAl) with a fine duplex structure and lamellar structure has been investigated by scanning electron microscope (SEM) in situ observation in vacuum at 750°C and room temperature. For the duplex structured material the fatigue crack growth rates are dominated by the maximum stress intensity, particularly at 750°C. The threshold stress intensity range for fatigue crack growth at 750°C is lower than that at room temperature for any corresponding stress ratio. The fatigue crack growth rate at 750°C is affected by creep deformation in front of the crack tip. The severe crack blunting occurs when the stress ratio is 0.5. For the lamellar structured material the scatter of fatigue crack growth data is very large. Small cracks propagate at the stress intensity range below the threshold for long fatigue crack growth. The effects of microstructure on fatigue crack growth are discussed.  相似文献   

10.
Selective laser melting (SLM) is an emerging additive manufacturing technology, capable of producing complex geometry components. The current work studied both the effect of substrate material and mean stress on the fatigue crack growth behaviour along interfaces of bi‐material specimens, substrate, and part by SLM. Fatigue tests were carried out in agreement with ASTM E647 standard, using 6‐mm‐thick compact specimens. The substrate steel has only a negligible effect both on the fatigue crack propagation rate and on the crack path. The failure occurs in the material additively manufactured by SLM, near the interface. The mean stress produced only a reduced influence on the fatigue crack propagation rate in the Paris regime. For larger values of ΔK, where Kmax approaches KIc, a significant influence of the mean stress was observed. In spite of nondetection of crack closure, the application of overloads promoted significant fatigue crack retardation, quite similar for both substrate materials, probably due to the crack bifurcation during the overload.  相似文献   

11.
Surface replication method was utilized to monitor the small fatigue crack initiation and growth process of single‐edge‐notch tension specimens fabricated by nickel base superalloy GH4169. Three different stress levels were selected. Results showed that small fatigue cracks of nickel base superalloy GH4169 initiated from grain boundaries or surface inclusions. The small fatigue crack initiation and growth stages took up about 80–90% of the total fatigue life. Multiple major cracks were observed in the notch root, and specimen with more major cracks seemed to have smaller fatigue life under the same test conditions. At the early growth stage, small crack behaviour might be strongly influenced by microstructures; thus, the crack growth rates had high fluctuations. However, the stress level effect on the small fatigue crack growth rates was not distinguishable for the three different stress levels. And no clear differences were found among the crack initiation lives by using replication technique.  相似文献   

12.
Heavy components of ductile cast iron frequently exhibit metallurgical defects that behave like cracks under cyclic loading. Thus, in order to decide whether a given defect is permissible, it is important to establish the fatigue crack growth properties of the material. In this paper, results from a comprehensive study of ductile cast iron EN‐GJS‐400‐18‐LT have been reported. Growth rates of fatigue cracks ranging from a few tenths of a millimetre (‘short’ cracks) to several millimetres (‘long’ cracks) have been measured for load ratios R=?1, R= 0 and R= 0.5 using a highly sensitive potential‐drop technique. Short cracks were observed to grow faster than long cracks. The threshold stress intensity range, ΔKth, as a function of the load ratio was fitted to a simple crack closure model. Fatigue crack growth data were compared with data from other laboratories. Single plain fatigue tests at R=?1 and R= 0 were also carried out. Fracture toughness was measured at temperatures ranging from ?40 °C to room temperature.  相似文献   

13.
Fatigue crack nucleation and growth in filled natural rubber   总被引:1,自引:0,他引:1  
Rubber components subjected to fluctuating loads often fail due to nucleation and the growth of defects or cracks. The prevention of such failures depends upon an understanding of the mechanics underlying the failure process. This investigation explores the nucleation and growth of cracks in filled natural rubber. Both fatigue macro‐crack nucleation as well as fatigue crack growth experiments were conducted using simple tension and planar tension specimens, respectively. Crack nucleation as well as crack growth life prediction analysis approaches were used to correlate the experimental data. Several aspects of the fatigue process, such as failure mode and the effects of R ratio (minimum strain) on fatigue life, are also discussed. It is shown that a small positive R ratio can have a significant beneficial effect on fatigue life and crack growth rate, particularly at low strain range.  相似文献   

14.
The fatigue crack growth properties of friction stir welded joints of 2024‐T3 aluminium alloy have been studied under constant load amplitude (increasing‐ΔK), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka's method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold ΔK values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to KC instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non‐conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non‐conservative crack growth rate predictions next to KC instability. At threshold ΔK values non‐conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.  相似文献   

15.
Some of the fatigue tests performed using the standard compact tension (CT) and a non‐standard specimen made of rolled 7075 aluminium alloy exhibit fatigue crack growth (FCG) lagging in a small region along the crack front. Through‐thickness microstructural evaluation shows that material grains in this region did not flatten as much as other regions. In the non‐standard specimen, surface cracks are either grown under fatigue loading or broken under monotonically increasing quasi‐static loads at different crack sizes. The aforementioned lagging also exists in a narrow region of 3‐D FCG for specimens with microstructural through‐thickness non‐uniformity. A more important feature for this type of specimen with surface crack is the deflection of fast fracture direction into the grain interfaces, namely from L‐T orientation to S‐L and S‐T directions. It is proved that this is due to significant levels of second principal stresses near the free surface for small cracks and lower fracture toughness of the material in S‐L and S‐T directions.  相似文献   

16.
Fracture and fatigue tests have been performed on micro‐sized specimens for microelectromechanical systems (MEMS) or micro system technology (MST) applications. Cantilever beam type specimens with dimensions of 10 × 12 × 50 μm3, approximately 1/1000th the size of ordinary‐sized specimens, were prepared from a Ni–P amorphous thin film by focused ion beam machining. Fatigue crack growth and fracture toughness tests were carried out in air at room temperature, using a mechanical testing machine developed for micro‐sized specimens. In fracture toughness tests, fatigue pre‐cracks were introduced ahead of the notches. Fatigue crack growth resistance curves were obtained from the measurement of striation spacing on the fatigue surface, with closure effects on the fatigue crack growth also being observed for micro‐sized specimens. Once fatigue crack growth occurs, the specimens fail within one thousand cycles. This indicates that the fatigue life of micro‐sized specimens is mainly dominated by a crack initiation process, also suggesting that even a micro‐sized surface flaw may be an initiation site for fatigue cracks which will shorten the fatigue life of micro‐sized specimens. As a result of fracture toughness tests, the values of plane strain fracture toughness, KIC, were not obtained because the criteria of plane strain were not satisfied by this specimen size. As the plane strain requirements are determined by the stress intensity, K, and by the yield stress of the material, it is difficult for micro‐sized specimens to satisfy these requirements. Plane‐stress‐ and plane‐strain‐dominated regions were clearly observed on the fracture surfaces and their sizes were consistent with those estimated by fracture mechanics calculations. This indicates that fracture mechanics is still valid for such micro‐sized specimens. The results obtained in this investigation should be considered when designing actual MEMS/MST devices.  相似文献   

17.
Orthotropic steel decks are vulnerable to fatigue cracking in welded connections and complex geometrical details. A total of three fatigue tests were conducted on segments of orthotropic steel deck to evaluate the fatigue performance of trough‐to‐crossbeam connections with various cut‐out configurations. In the tests, the specimens were subjected to cyclic three‐point bending load and the fatigue cracks were more likely to initiate from the cope holes in the crossbeam web rather than the trough‐to‐crossbeam fillet welds. Three‐dimensional finite element models (FEM) of the specimens were built and validated by the measured deflections and stresses. Using the validated FEM, the characteristic stresses based on the theory of critical distances (TCD) were calculated for the stress concentrations along the cope holes. The fatigue crack initiation life, predicted by the TCD‐based stress combined with the plain material S–N curve, agreed reasonably with the fatigue test results. The TCD method could further form a basis of fatigue crack propagation analysis using the fracture mechanics approaches.  相似文献   

18.
The building of Inconel 625 material was carried out using the selective laser melting method, and its fatigue crack growth property at ambient temperature was experimentally investigated. Compact‐tension specimens with different building orientations were utilized to determine the stress intensity factor threshold and fatigue crack growth rate curves at different stress ratios (R). The results indicated that the fatigue crack growth properties in the near threshold stress intensity factor and Paris regions were greatly affected by the loading factor, as well as the orientation of the alloy. The mechanism of fatigue crack growth at different stages was observed and discussed using scanning electron microscopy. Finally, based on the framework of the linear elastic fracture, a new and applicable effective driving force factor range was introduced to replace the traditional stress intensity factor range (ΔK) with good accuracy for all of the fatigue crack growth test data, considering both the stress ratio and orientation.  相似文献   

19.
Small internal fatigue cracks initiated in Ti‐6Al‐4V in the very high cycle regime were detected by synchrotron radiation microcomputed tomography (SR‐μCT) at SPring‐8 in Japan. The initiation and growth behaviours of the cracks were nondestructively observed, and the da/dNΔK relationship was measured and compared with that obtained in a high vacuum environment. SR‐μCT revealed that more than 20 cracks were initiated in one specimen. The crack initiation life varied widely from 20% to 70% of the average fatigue life and had little influence on the growth behaviour that followed. The initiation site size of each internal crack detected in one specimen was comparable with the size of the fracture origins obtained in ordinary fatigue tests. These results suggest that the surrounding microstructures around the initiation site are likely a dominant factor on the internal fracture rather than the potential initiation site itself. The internal crack growth rates were lower than 10?10 m/cycle, and extremely slow rates ranging from 10?13 to 10?11 m/cycle were measured in a lower ΔK regime below 5 MPa√m. The internal crack growth rate closely matched that of surface cracks in a high vacuum, and the reason for the very long life of internal fatigue fractures was believed to result from the vacuum‐like environment inside the internal cracks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号