首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure, the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. While reducing the extent of unacceptable consequences, the walls may introduce other hazards if not properly configured. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure, wall deflection, radiative heat flux, and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers, computations of the thermal radiation field around barriers, predicted overpressure from ignition, and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.  相似文献   

2.
Hydrogen-jet flames resulting from ignition of unintended releases can be extensive in length and pose hazards associated with radiation and impingement onto objects, combustible materials and people. Depending on the leak diameter and source pressure, the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. While reducing the extent of unacceptable consequences, the walls may introduce other hazards if not properly configured. An experimental program has been implemented to better characterize the effectiveness of barrier walls at risk mitigation. This paper describes the experiments and presents results obtained for various barrier configurations. The measurements include flame deflection using standard and infrared video, high-speed movies (500 fps) to study initial flame propagation from the ignition source, overpressure levels due to ignition, wall deflection, radiative heat flux, and gas and wall temperatures. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting flames in a desired direction. While barrier walls can result in increased overpressures and radiative heat flux in the vicinity of the wall, they can also attenuate the effects of these hazards in surrounding areas if properly implemented.  相似文献   

3.
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. While reducing the extent of unacceptable consequences, the walls may introduce other hazards if not properly configured. This paper describes experiments carried out to characterize the effectiveness of different barrier wall configurations at reducing the hazards created by jet fires. The hazards that are evaluated are the generation of overpressure during ignition, the thermal radiation produced by the jet flame, and the effectiveness of the wall at deflecting the flame.The tests were conducted against a vertical wall (1-wall configuration), and two “3-wall” configurations that consisted of the same vertical wall with two side walls of the same dimensions angled at 135° and 90°. The hydrogen jet impinged on the center of the central wall in all cases. In terms of reducing the radiation heat flux behind the wall, the 1-wall configuration performed best followed by the 3-wall 135° configuration and the 3-wall 90°. The reduced shielding efficiency of the three-wall configurations was probably due to the additional confinement created by the side walls that limited the escape of hot gases to the sides of the wall and forced the hot gases to travel over the top of the wall.The 3-wall barrier with 135° side walls exhibited the best overall performance. Overpressures produced on the release side of the wall were similar to those produced in the 1-wall configuration. The attenuation of overpressure and impulse behind the wall was comparable to that of the three-wall configuration with 90° side walls. The 3-wall 135° configuration’s ability to shield the back side of the wall from the heat flux emitted from the jet flame was comparable to the 1-wall and better than the 3-wall 90° configuration. The ratio of peak overpressure (from in front of the wall and from behind the wall) showed that the 3-wall 135° configuration and the 3-wall 90° configuration had a similar effectiveness. In terms of the pressure mitigation, the 3-wall configurations performed significantly better than the 1-wall configuration.  相似文献   

4.
A combined experimental and modeling program is being carried out at Sandia National Laboratories to characterize and predict the behavior of unintended hydrogen releases. In the case where the hydrogen leak remains unignited, knowledge of the concentration field and flammability envelope is an issue of importance in determining consequence distances for the safe use of hydrogen. In the case where a high-pressure leak of hydrogen is ignited, a classic turbulent jet flame forms. Knowledge of the flame length and thermal radiation heat flux distribution is important to safety. Depending on the effective diameter of the leak and the tank source pressure, free jet flames can be extensive in length and pose significant radiation and impingement hazard, resulting in consequence distances that are unacceptably large. One possible mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. The reasoning is that walls will reduce the extent of unacceptable consequences due to jet releases resulting from accidents involving high-pressure equipment. While reducing the jet extent, the walls may introduce other hazards if not configured properly. The goal of this work is to provide guidance on configuration and placement of these walls to minimize overall hazards using a quantitative risk assessment approach. The program includes detailed CFD calculations of jet flames and unignited jets to predict how hydrogen leaks and jet flames interact with barriers, complemented by an experimental validation program that considers the interaction of jet flames and unignited jets with barriers.  相似文献   

5.
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes [1] suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones. Work by Sandia National Laboratories [2] included experiments and modeling aimed at characterisation of the effectiveness of barrier walls at reducing hazards.This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at giving protection from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak.The work was primarily focused on compressed H2 storage for stationary fuel cell systems, which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks; all releases were made from storage at 200 bar.Overall conclusions on barrier performance were made based on the recorded measurements.  相似文献   

6.
Jet flames originated by cryo-compressed ignited hydrogen releases can cause life-threatening conditions in their surroundings. Validated models are needed to accurately predict thermal hazards from a jet fire. Numerical simulations of cryogenic hydrogen flow in the release pipe are performed to assess the effect of heat transfer through the pipe walls on jet parameters. Notional nozzle exit diameter is calculated based on the simulated real nozzle parameters and used in CFD simulations as a boundary condition to model jet fires. The CFD model was previously validated against experiments with vertical cryogenic hydrogen jet fires with release pressures up to 0.5 MPa (abs), release diameter 1.25 mm and temperatures as low as 50 K. This study validates the CFD model in a wider domain of experimental release conditions - horizontal cryogenic jets at exhaust pipe temperature 80 K, pressure up to 2 MPa ab and release diameters up to 4 mm. Simulation results are compared against such experimentally measured parameters as hydrogen mass flow rate, flame length and radiative heat flux at different locations from the jet fire. The CFD model reproduces experiments with reasonable for engineering applications accuracy. Jet fire hazard distances established using three different criteria - temperature, thermal radiation and thermal dose - are compared and discussed based on CFD simulation results.  相似文献   

7.
Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases.  相似文献   

8.
Considerable effort is being directed toward updating safety codes and standards in preparation for production, distribution, and retail of hydrogen as a consumer energy source. In the present study, measurements were performed in large-scale, vertical flames to characterize the dimensional and radiative properties of an ignited hydrogen jet. These data are relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel. Specifically, the data will provide a technological basis for determining hazardous length scales associated with unintended releases at hydrogen storage and distribution centers. Visible and infrared video and ultraviolet flame luminescence imaging were used to evaluate flame length, diameter and structure. Radiometer measurements allowed determination of the radiant heat flux from the flame. The results show that flame length increases with total jet mass flow rate and jet nozzle diameter. When plotted as a function of Froude number, which measures the relative importance of jet momentum and buoyancy, the measured flame lengths for a range of operating conditions collapse onto the same curve. Good comparison with hydrocarbon jet flame lengths is found, demonstrating that the non-dimensional correlations are valid for a variety of fuel types. The radiative heat flux measurements for hydrogen flames show good agreement with non-dimensional correlations and scaling laws developed for a range of fuels and flame conditions. This result verifies that such correlations can be used to predict radiative heat flux from a wide variety of hydrogen flames and establishes a basis for predicting a priori the characteristics of flames resulting from accidental releases.  相似文献   

9.
Characteristics of high-pressure hydrogen jet flames resulting from ignition of hydrogen discharge during the bonfire test of composite hydrogen storage vessels are studied. Firstly, a 3-D numerical model is established based on the species transfer model and SST k − ω turbulence model to study the high-pressure hydrogen jet flow. It is revealed that under-expanded jets are formed after the high-pressure hydrogen discharging from the vessel. Secondly, the mathematical methods are adopted to study the high-pressure hydrogen jet flames. The effects of pressure, initial temperature and the nozzle diameter on the jet flames are investigated. The results show that the jet flame length increases with the increase of discharge pressure, but decreases with the increase of nozzle diameter and temperature difference between the filling hydrogen temperature and the environment temperature. Finally, the simulation models are established to study the characteristics of hydrogen jet flames in an open space. The effects of barrier walls on the distribution of jet flames are also studied. The results show that the barrier walls can greatly reduce the damage from hydrogen jet flames to testers and properties around.  相似文献   

10.
The thermal hazards from ignited under-expanded cryogenic releases are not yet fully understood and reliable predictive tools are missing. This study aims at validation of a CFD model to simulate flame length and radiative heat flux for cryogenic hydrogen jet fires. The simulation results are compared against the experimental data by Sandia National Laboratories on cryogenic hydrogen fires from storage with pressure up to 5 bar abs and temperature in the range 48–82 K. The release source is modelled using the Ulster's notional nozzle theory. The problem is considered as steady-state. Three turbulence models were applied, and their performance was compared. The realizable k-ε model showed the best agreement with experimental flame length and radiative heat flux. Therefore, it has been employed in the CFD model along with Eddy Dissipation Concept for combustion and Discrete Ordinates (DO) model for radiation. A parametric study has been conducted to assess the effect of selected numerical and physical parameters on the simulations capability to reproduce experimental data. DO model discretisation is shown to strongly affect simulations, indicating 10 × 10 as minimum number of angular divisions to provide a convergence. The simulations have shown sensitivity to experimental parameters such as humidity and exhaust system volumetric flow rate, highlighting the importance of accurate and extended publication of experimental data to conduct precise numerical studies. The simulations correctly reproduced the radiative heat flux from cryogenic hydrogen jet fire at different locations.  相似文献   

11.
Radiative heat fluxes from small to medium-scale hydrogen jet flames (<10 m) compare favorably to theoretical predictions provided the product species thermal emittance and optical flame thickness are corrected for. However, recent heat flux measurements from two large-scale horizontally orientated hydrogen flames (17.4 and 45.9 m respectively) revealed that current methods underpredicted the flame radiant fraction by 40% or more. Newly developed weighted source flame radiation models have demonstrated substantial improvement in the heat flux predictions, particularly in the near-field, and allow for a sensible way to correct potential ground surface reflective irradiance. These updated methods are still constrained by the fact that the flame is assumed to have a linear trajectory despite buoyancy effects that can result in significant flame deformation. The current paper discusses a method to predict flame centerline trajectories via a one-dimensional flame integral model, which enables optimized placement of source emitters for weighted multi-source heat flux prediction methods. Flame shape prediction from choked releases was evaluated against flame envelope imaging and found to depend heavily on the notional nozzle model formulation used to compute the density weighted effective nozzle diameter. Nonetheless, substantial improvement in the prediction of downstream radiative heat flux values occurred when emitter placement was corrected by the flame integral model, regardless of the notional nozzle model formulation used.  相似文献   

12.
Thermal hazards from an under-expanded (900 bar) hydrogen jet fire have been numerically investigated. The simulation results have been compared with the flame length and radiative heat flux measured for the horizontal jet fire experiment conducted at INERIS. The release blowdown characteristics have been modelled using the volumetric source as an expanded implementation of the notional nozzle concept. The CFD study employs the realizable k-ε model for turbulence and the Eddy Dissipation Concept for combustion. Radiation has been taken into account through the Discrete Ordinates (DO) model. The results demonstrated good agreement with the experimental flame length. Performance of the model shall be improved to reproduce the radiative properties dynamics during the first stage of the release (time < 10 s), whereas, during the remaining blowdown time, the simulated radiative heat flux at five sensors followed the trend observed in the experiment.  相似文献   

13.
A possible consequence of pressurized hydrogen release is an under-expanded jet fire. Knowledge of the flame length, radiative heat flux as well as the effects of variations in ground reflectance is important for safety assessment. The present study applies an open source CFD code FireFOAM to study the radiation characteristics of hydrogen and hydrogen/methane jet fires. For combustion, the eddy dissipation concept for multi-component fuels recently developed by the authors in the large eddy simulation (LES) framework is used. The radiative heat is computed with the finite volume discrete ordinates model in conjunction with the weighted sum of grey gas model for the absorption/emission coefficient. The pseudo-diameter approach is used in which the corresponding parameters are calculated using the formulations of Birch et al. [24] with the thermodynamic properties corrected by the Able-Noble equation of state. The predicted flame length and radiant fraction are in good agreement with the measurements of Schefer et al. [2], Studer et al. [3] and Ekoto et al. [6]. In order to account for the effects of variation in ground surface reflectance, the emissivity of hydrogen flames was modified following Ekoto et al. [6]. Four cases with different ground reflectance are computed. The predictions show that the ground surface reflectance only has minor effect on the surface emissive power of the smaller hydrogen jet fire of Ekoto et al. [6]. The radiant fractions fluctuate from 0.168 to 0.176 close to the suggested value of 0.16 by Ekoto et al. [6] based on the analysis of their measurements.  相似文献   

14.
Safety studies for hydrogen retail stations involve identification of possible accidental scenarios, modelling of consequences and measures to mitigate associated hazards with it. Accidental release of hydrogen during its handling and storage can lead to formation of ignitable mixture in a very short time. Ignition of such a mixture can lead to generation of overpressure affecting structure and people. Understanding of the possible overpressures generated is critical in designing the system safe from explosion hazards. In the present study, the worst-case scenario where high-pressure hydrogen storage cylinders are enveloped by a premixed hydrogen-air cloud is numerically simulated. The computational domain mimics the setup for premixed hydrogen cloud in a mock hydrogen cylinder storage congestion environment experimentally studied by Shirvill et al. [1]. Large Eddy Simulations (LES) are performed using OpenFOAM CFD toolbox solver. The Flame Surface Wrinkling Model in LES context is used for modelling deflagrations [2]. Numerical simulation results are compared against experiments. Simulations are able to predict experimental flame arrival and overpressure reasonably well. The effects of ignition location, congestion and confining walls on the turbulent deflagrations in particular on explosion overpressure are discussed. It was concluded that explosion overpressure increases with increase in confinement.  相似文献   

15.
Within the scope of the French national project DRIVE and European project HyPER, high pressure jet flames of hydrogen were produced and instrumented.The experimental technique and measurement strategy are presented. Many aspects are original developments like the direct measurement of the mass flow rate by weighing continuously the hydrogen container, the image processing to extract the flame geometry, the heat flux measurement device, the thermocouples arrangement…Flames were observed from 900 bar down to 1 bar with orifices ranging from 1 to 3 mm. An original set of data is now available about the main flame characteristics and about some thermodynamic aspects of hydrogen releases under high pressure.A brief comparison of some available models is presented.  相似文献   

16.
This work is focused on the explosion characteristics of premixed gas containing different volume fractions of hydrogen in a narrow channel (1000 mm × 50 mm × 10 mm) under the circumstance of stoichiometric ratio. The ignition positions were set in the closed end and the middle of the pipeline respectively. The results showed that when the gas was ignited at the pipeline closed end, the propagating flame was tulip structure for different premixed gas. When the hydrogen volume fraction was less than 40%, the flame propagation speed increased significantly with the rise of hydrogen volume fraction, and the overpressure peak also appeared obviously in advance. However, when the volume fraction of hydrogen was more than 40%, the increase of flame propagation speed and the overpressure peak occurrence time varied slightly. Furthermore, when the ignition position was placed in the middle of the pipeline, the flame propagation speed propagating to the opening end was much faster than that propagating to the closing end, and there was no tulip shape when the flame propagates to the opening end. The flame propagating to the closed end appeared tulip shape under the influence of airflow, and high-frequency flame oscillation occurred during the propagation. This work shows that the hydrogen volume fraction and ignition position significantly affected the flame structure, flame front speed, and explosion overpressure.  相似文献   

17.
If the general public is to use hydrogen as a vehicle fuel, customers must be able to handle hydrogen with the same degree of confidence, and with comparable risk, as conventional liquid and gaseous fuels. The hazards associated with jet releases from leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release in a confined or congested area can create an explosion hazard. As there was insufficient knowledge of the explosion hazards, a study was initiated to gain a better understanding of the potential explosion hazard consequences associated with high-pressure leaks from hydrogen vehicle refuelling systems. This paper describes the experiments with a dummy vehicle and dispenser units to represent refuelling station congestion. Experiments with ignition of premixed 5.4 m × 6.0 m × 2.5 m hydrogen–air clouds and hydrogen jet releases up to 40 MPa (400 bar) pressure are described. The results are discussed in terms of the conditions leading to the greatest overpressures and overall conclusions are made from these.  相似文献   

18.
Unintentional leaks at hydrogen fueling stations have the potential to form hydrogen jet flames, which pose a risk to people and infrastructure. The heat flux from these jet flames are often used to develop separation distances between hydrogen components and buildings, lot-lines, etc. The heat flux and visible flame length is well understood for releases from round nozzles, but real unintended leaks would be expected to be from higher aspect-ratio cracks. In this work, we measured the visible flame length and heat-flux characteristics of cryogenic hydrogen flames from high-aspect ratio nozzles. Heat flux measurements from 5 radiometers were used to assess the single-point vs the multi-point methods for interpretation of heat flux sensor data, finding the axial distance of the sensor for a single-point heat flux measurement to be important. We compare the flame length and heat flux data to flames of both cryogenic and compressed hydrogen from round nozzles. The aspect ratio of the release does not affect the flame length or heat flux significantly, for a given mass flow under the range of conditions studied. The engineering correlations presented in this work enable the prediction of flame length and heat flux which can be used to assess risk at hydrogen fueling stations with liquid hydrogen and develop science-based separation distances for these stations.  相似文献   

19.
Autoignited lifted flame behavior in laminar jets of methane/hydrogen mixture fuels has been investigated experimentally in heated coflow air. Three regimes of autoignited lifted flames were identified depending on initial temperature and hydrogen to methane ratio. At relatively high initial temperature, addition of a small amount of hydrogen to methane improved ignition appreciably such that the liftoff height decreased significantly. In this hydrogen-assisted autoignition regime, the liftoff height increased with jet velocity, and the characteristic flow time – defined as the ratio of liftoff height to jet velocity – correlated well with the square of the adiabatic ignition delay time. At lower temperature, the autoignited lifted flame demonstrated a unique feature in that the liftoff height decreased with increasing jet velocity. Such behavior has never been observed in lifted laminar and turbulent jet flames. A transition regime existed between these two regimes at intermediate temperature.  相似文献   

20.
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature, velocity, turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号