首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
对于面心立方结构的纳米金属,晶粒尺寸对孪生厚度(孪生核)的影响虽已有研究,但仍有待深入。本论文以Cu-30%Zn合金为模型材料,通过高压扭转变形技术、等径角挤压连同轧制技术变形得到晶粒尺寸在5~500nm的样品。透射电子显微镜观察发现:变形孪晶的片层厚度随晶粒尺寸的减小而减小,当晶粒尺寸小于20nm以后,孪晶厚度为(111)晶面间距(层错);另外,层错存在于各个不同尺寸范围的晶粒内,表明层错不受晶粒尺寸影响。研究结果表明在低层错能超细晶材料中,孪生变形是通过从晶界连续发射不全位错(层错)形成的。  相似文献   

2.
王雷  奚运涛  王世清  高倩 《材料导报》2018,32(Z1):432-438
本研究通过等径通道挤压(ECAP)对孪晶诱导塑性变形钢(TWIP钢)在300℃下进行了晶粒细化,并运用金相显微镜、电子背散射衍射(EBSD)、透射电镜(TEM)观察了经不同道次挤压后TWIP钢的晶粒、孪晶形貌及位错组织。结果表明,在均匀化退火状态下,试样晶粒基本呈现等轴状态,通过测微尺测量晶粒尺寸,约为(90±30)μm。在1道次挤压后,晶粒沿剪切方向显著伸长,并有尺寸较小的新晶粒产生,许多形变孪晶在剪切带中产生。2道次挤压后新产生的细小晶粒增多,并开始产生许多微孪晶,孪晶易于在晶界处产生。经过4道次等径通道挤压,晶粒逐渐细化至超细晶状态,晶粒尺寸达到0.3~1μm,孪晶厚度随挤压道次的增多而不断减小,甚至达到几十纳米。在不同晶粒尺寸下,TWIP钢在高温ECAP过程中产生孪晶的机理不同。  相似文献   

3.
采用低能球磨-热压烧结制备了(FeNiCoCr)100-x Al x (x=0、5)高熵合金,并对其进行时效处理,研究了合金的组织结构与力学性能。结果表明:烧结态及时效态合金的微观组织均由FCC相和少量BCC相构成,其中FCC相中均存在孪晶,且未添加Al的合金中孪晶比例相对较高;添加Al的合金中BCC相较高,且时效处理后出现了大量小角度晶界。时效态FeNiCoCr合金具有最佳的综合性能,其压缩真屈服强度达545 MPa,弯曲强度和断裂韧性分别为1342±20 MPa和32.5±2.0 MPa·m1/2,优异的力学性能归因于FCC相中退火孪晶的形成以及BCC相的析出。  相似文献   

4.
镍基高温合金具有优良的成分兼容性、良好的组织稳定性、抗氧化和抗腐蚀性能,被广泛用于航空发动机和地面燃气轮机的涡轮叶片等关键的热端部件。沉淀相γ'对位错运动的阻碍是镍基高温合金的主要强化作用之一。一般而言,这种阻碍作用不仅与γ'相的形貌、体积分数及尺寸有关,也取决于γ'相与位错的交互作用。通常这种交互作用机制可分为三种:切割机制、Orowan绕过机制和热激活攀移机制。当不同类型的位错切割γ'相时,在γ'相中会形成不同的高能缺陷,能够阻碍位错运动,延缓材料软化。这类结构或成分缺陷包括:反相畴界(APB)、复杂层错(CSF)、超点阵内禀层错(SISF)、超点阵外禀层错(SESF)和微孪晶。微孪晶化(Micro-twinning)是镍基高温合金中一种重要的变形机制,主要发生在中温高应力条件下。此外,中温拉伸变形过程中也有微孪晶产生。早期研究表明,微孪晶的产生与SESF有关,可以认为SESF是"胚体孪晶",且SESF是由a/3〈112〉超点阵不全位错切入γ'相产生的。基于溶质原子短程扩散的原子重排(Reordering)机制被用来解释微孪晶的形成,即a/6〈112〉不全位错切入γ'相中先产生CSF,而后CSF通过原子重排转变为SESF,最终形成微孪晶。最近的研究表明,在微孪晶产生过程中,Co和Cr原子会在成分偏析和柯氏气团的作用下发生长程扩散,因此有学者指出微孪晶的形成是原子重排短程扩散机制和偏析主导的长程扩散共同作用的结果。同时,对于高温合金微孪晶机制的研究,研究人员不再局限于其形成机制,而对微孪晶的长大机制有了进一步的理解。共格的纳米孪晶界作为金属材料中的一种特殊缺陷,可以有效阻碍位错运动,从而强化材料,这种强化方式已经在纳米铜、TWIP钢以及Ti Al合金中得到应用。研究人员发现,孪晶能够强化固溶强化的镍合金;同时,有学者发现镍基高温合金中退火孪晶界对位错运动有明显的阻碍作用。因此,微孪晶化有望成为一种强化镍基高温合金的方法。本文归纳了镍基高温合金中微孪晶形成机制的发展和演变,分析了不全位错、内禀层错、外禀层错、复杂层错、元素偏析以及柯氏气团(Cottrell atmospheres)在微孪晶化中所起的作用,同时也阐述了孪晶界面处元素偏析在孪晶长大中的作用。此外,本文还综述了微孪晶在镍基高温合金强化中的作用,指出了通过微孪晶强化高温合金过程中存在的问题,展望了微孪晶在高温合金强化中的应用,为研究高温合金的中温变形机制和孪晶强化机制提供参考。  相似文献   

5.
镍基单晶高温合金热机疲劳断裂特征   总被引:1,自引:1,他引:0  
为了进一步提高镍基单晶高温合金的热机疲劳性能,通过微观结构解析研究了合金热机疲劳断裂特征.通过金相和扫描电子显微镜研究了热机疲劳断裂的断口特征和微观结构.研究表明:裂纹起源于形变孪晶与试样外表面的交截处,过程中的氧化有助于裂纹的长大;裂纹尖端的应力场诱发出大量形变孪晶,而形变孪晶的存在为裂纹进一步沿着孪晶界扩展提供了便利条件;镍基单晶高温合金的疲劳断裂主要是由于形变孪晶的形成以及裂纹沿孪晶界的扩展造成的.形变孪晶与高温合金疲劳断裂密切相关.  相似文献   

6.
在室温下对铸态高纯粗晶铝进行一道次高应变率动态等径角挤压(D-ECAP)变形,利用电子背散射衍射技术(EBSD)研究挤压过程中所形成的孪晶。结果表明:利用D-ECAP能够在粗晶铝中同时制备出形变孪晶和退火孪晶,但两者在形态、Kernel平均取向差(KAM)以及与相邻晶粒的取向差三个方面存在较大差异。D-ECAP高应变率和大剪切变形使高层错能铝中形成了百微米级的形变孪晶,形变孪晶的形态为透镜状,后续变形使得孪晶界偏离∑3 60°〈111〉取向关系且KAM值主要集中于0.6°~1.8°。高应变率剪切变形下形成的大量层错和复杂的位错组态以及高形变储存能在变形温升的作用下促进了退火孪晶的形成。退火孪晶的形态较不规则,但孪晶界的取向关系更接近于∑3 60°〈111〉且KAM值主要集中于0.2°~0.5°。  相似文献   

7.
利用定向凝固技术制备了生长取向集中于■、基面〈a〉滑移取向因子(Schmidfactor, SF)大于0.4的柱状多晶Mg-6.38Gd-0.45Y合金,并研究了实验合金室温拉伸形变行为。结果表明,形变初期,软取向柱状晶内首先启动■拉伸孪生协调应变。形变过程中■,拉伸孪晶界快速、大范围扩展,吞噬基体并使基体取向逐渐转为■,于是启动■压缩孪生和■双孪生协调应变。压缩孪晶和双孪晶易形成压缩孪晶带群,并贯穿整个晶粒,滑移或扩展的位错及拉伸孪晶界与压缩孪晶带群交织在一起,产生形变硬化,提高合金强度的同时也形成应力高度集中分布区域,成为微裂纹形成之地。  相似文献   

8.
4Cr14Ni14W2Mo钢的奥氏体晶粒度和孪晶及碳化物   总被引:1,自引:0,他引:1  
对锻造的4Cr14Ni14W2Mo钢经相应热处理后的奥氏体晶粒度、孪晶及碳化物类型进行了研究。认为固溶处理后的奥氏体晶粒度主要取决于固溶加热温度,与锻造温度关系不大。固溶加热过程实质是再结晶过程的继续,即二次再结晶。奥氏体晶粒的大小只能通过控制再结晶温度的高低和时间长短来实现。该钢热处理后,碳化物类型为M_(23)C_6和M_7C_3两种,而以M_(23)C_6居多。其中M_(23)C_6为(Cr、Fe、W、Mo)_(23)C_6和(Fe、Ni)_(23)C_6两种结构,而M_7C_3为(Cr、Fe)_7C_3。  相似文献   

9.
金属Cu中孪晶的作用已受到广泛关注.介绍了孪晶的分类及晶体学结构,综述了孪晶对Cu强度、塑性、加工硬化、应变速率敏感性、变形机制和电阻率(或电导率)等方面的影响规律及内在机理,讨论了孪晶Cu研究的不足之处及需要加强的方面,并指出通过适当的工艺技术,在晶粒中引入高密度的孪晶同时获得高强度、高塑性和良好电导性能,将是未来发...  相似文献   

10.
在室温条件下,对AZ31镁合金挤压棒材进行循环扭转变形,测试了扭转变形过程的力学性能以及变形后的微观组织和织构特征,并对扭转变形对镁合金棒材的力学性能影响进行了分析。结果表明:镁合金棒材在循环扭转过程中得到了严格对称的应力-应变滞回线,并且随着循环周期的增加,由于加工硬化和内部微裂纹扩展的共同影响,应力-应变滞回线上的应力峰值呈现先增加后减小的特征。在最大扭转角分别为60°和90°条件下,应力峰值出现在第四周期。镁合金棒材扭转变形后的晶粒中出现大量的拉伸孪晶带,孪晶启动使晶粒的 C 轴转向棒材轴线方向。镁合金棒材扭转变形后的力学性能测试结果显示,循环扭转变形明显提高了镁合金棒材压缩变形的屈服强度,其值由扭转前的约100MPa最大提高至约200MPa。  相似文献   

11.
We have performed quantitative analysis of {332}〈113〉 twinning in a β-Ti-15Mo (wt.%) alloy by in situ scanning electron microscopy and electron backscattering diffraction (EBSD). Microstructure-twinning relations were evaluated by statistical analysis of the evolving twin structure upon deformation at room temperature. Our analysis reveals that at the early stages of deformation (ε < 1.5 to 2.0%), primary twinning is mainly determined by the applied macroscopic stress resolved on the twin system. Most of the primary twins (~70–80% of the analyzed twins) follow Schmid’s law with respect to the macroscopic stress, and most of the growth twins (~ 85% of the analyzed twins) correspond to the higher stressed variant. In the grain size range studied here (40–120 μm), we find that several twin parameters such as number of twins per grain and number of twins per grain boundary area exhibit grain size dependence. We ascribe these effects to the grain size dependence of twin nucleation stress and apparent critical resolved shear stress for twinning, respectively.  相似文献   

12.
Twinning and de-twinning are the salient deformation mechanisms in hexagonal close-packed(hcp)metals. The aim of this study was to examine and quantify the de-twinning process involving a reversible motion of twin boundaries in an extruded AM30 magnesium alloy after re-compression along the normal direction(ND) of pre-compressed samples along the extrusion direction(ED). {1012} extension twins were first introduced at a compressive strain of 3.7% along the ED. The subsequent compressive deformation along the ND induced a gradual shrinkage of twins with increasing cumulative true strain,and the complete de-twinning occurred at a strain of ~7.7%. The twin width decreased linearly with increasing true strain. Texture measurements verified the rotation of c-axes of hcp unit cells towards the anti-compression direction due to {1012} extension twinning after compression along the ED, and a gradual return of c-axes to the initial orientation due to twin shrinking or de-twinning during the following compression along the ND. The {1012} twinning corresponded to the formation of new texture components C{1210}<0001> and D{0110}<0001> and a decrease in the initial texture components A{0001}<2110> and B{0001}<1010>, while the twin shrinking or de-twinning was characterized by a gradual vanishing of components C{1210}<0001> and D{0110}<0001> and an increase in the components A{0001}<2110> and B{0001}<1010>.  相似文献   

13.
A coarse-grained Cu–36Zn–2Pb alloy with an initial grain size of ~54 μm was processed by high-pressure torsion (HPT) at room temperature under an applied pressure of 6.0 GPa through 1–10 turns, and the evolution of microstructure and microhardness was investigated. Analysis by X-ray diffraction (XRD) showed that in HPT processing the β′-phase transforms to an α-phase and a {111} texture is formed. Microscopic examination showed that dislocations were first formed at equivalent strains of not more than ~25 and when the equivalent strain increased to ~40 there was evidence for twins and secondary twinning. Fine grains were formed with an increase in equivalent strain to ~100 and with further straining these refined grains acted as precursors for additional grain refinement. The refined equiaxed grain size was ~250 nm after HPT through an equivalent strain of ~100 and the results show the microhardness reached a saturation value of ~220 Hv.  相似文献   

14.
A stereological analysis of electron backscatter diffraction data has been used to measure the five-parameter grain boundary character distribution of chemically modified 316LN stainless steel exposed to both elevated and cryogenic temperature. The results were analyzed to determine if the thermal treatments induced any significant changes in the overall grain boundary character distribution and fractional twin density. The results of this study show that the grain boundary character distribution of this steel is very similar to other FCC polycrystals and not affected by typical thermal treatments used in processing or the cryogenic temperatures employed during service.  相似文献   

15.
The microstructure and the spectrum of grain boundary misorientations were studied in Armco iron, following high pressure torsion (HPT) deformation, by means of transmission electron microscopy (TEM) and orientation imaging microscopy (OIM). It was found that HPT deformation results in the formation of an equiaxed grain structure with a mean grain size of 270 and 130 nm using a shear strain of γ = 210 and 420, respectively. The misorientation spectra in HPT iron have a bimodal character with maxima in low (at 1–2°) as well as in high misorientation angle ranges. A marked increase in the fraction of special boundaries (Σ3–Σ45) was revealed as a result of HPT. The microstructural changes due to HPT are discussed and compared with those obtained during conventional deformation modes.  相似文献   

16.
Zhang L  Han Y  Lu J 《Nanotechnology》2008,19(16):165706
A nanostructured surface layer with thickness of about 20?μm was formed on commercially pure zirconium using surface mechanical attrition treatment (SMAT). The microstructural features of the surface layer were systematically investigated using optical microscopy (OM), x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), respectively. Based on the results obtained, a grain refinement mechanism induced by plastic deformation during SMAT of Zr is proposed. At?the initial stage of SMAT, twinning dominates the plastic deformation of Zr and divides the coarse grains of Zr into finer twin plates. With increasing strain, intersection of twins occurs, and dislocation slips are activated, becoming the predominant deformation mode instead of twinning. As a result of the dislocation slips, high-density dislocation arrays are formed, which further subdivide the twin plates into subgrains of size about 200-400?nm. With a further increase of strain, the dislocations accumulate and rearrange to minimize the energy state of the high-strain-energy subgrains, the dense dislocation walls convert to grain boundaries, and the submicronic grains are subdivided, leading to the formation of nanosized grains at the top of the treated surface.  相似文献   

17.
In this work, a recently developed electron diffraction technique called diffraction scanning transmission electron microscopy (D-STEM) is coupled with precession electron microscopy to obtain quantitative local texture information in damascene copper interconnects (1.8 μm-70 nm in width) with a spatial resolution of less than 5 nm. Misorientation and trace analysis is performed to investigate the grain boundary distribution in these lines. The results reveal strong variations in texture and grain boundary distribution of the copper lines upon downscaling. Lines of width 1.8 μm exhibit a strong <111> normal texture and comprise large micron-size grains. Upon downscaling to 180 nm, a {111}<110> bi-axial texture has been observed. In contrast, narrower lines of widths 120 and 70 nm reveal sidewall growth of {111} grains and a dominant <110> normal texture. The microstructure in these lines comprises clusters of small grains separated by high angle boundaries in the vicinity of large grains. The fraction of coherent twin boundaries also reduces with decreasing line width.  相似文献   

18.
19.
We have studied {332}<113> detwinning mechanism in a bcc-Ti–10Mo–xFe (x = 1–3 wt%) multilayered alloy upon annealing treatment at 900 °C by electron backscatter diffraction and electron channeling contrast imaging. Our analysis reveals that in the present material the detwinning process consists of two independent detwinning events that occur at two different microstructural regions, namely twin tips located at grain interiors and grain boundaries. Boundary dissociation reactions and mobilities were analyzed by tracking the evolution of the twin structure upon thermal annealing. We find that the first detwinning process is characterized by the evolution of incoherent twin boundaries into a Σ3 boundary and its subsequent migration. The second detwinning event is characterized by the detachment of the twin crystal from a grain boundary by the formation and migration of Σ11 {113} incoherent twin boundaries. Both detwinning modes can be explained from a thermodynamic standpoint where the boundary dissociation processes minimize the boundary free energy.  相似文献   

20.
This article systematically overviews the grain size effect on deformation twinning and detwinning in face-centered cubic (fcc) metals. With decreasing grain size, coarse-grained fcc metals become more difficult to deform by twinning, whereas nanocrystalline (nc) fcc metals first become easier to deform by twinning and then become more difficult, exhibiting an optimum grain size for twinning. The transition in twinning behavior from coarse-grained to nc fcc metals is caused by the change in deformation mechanisms. An analytical model based on observed deformation physics in nc metals, i.e., grain boundary emission of dislocations, provides an explanation of the observed optimum grain size for twinning in nc fcc metals. The detwinning process is caused by the interaction between dislocations and twin boundaries. Under a certain deformation condition, there exists a grain size range where the twinning process dominates over the detwinning process to produce the highest density of twins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号