首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing demand for natural rubber (NR) calls for an increase in latex yield and also an extension of rubber plantations in marginal zones. Both harvesting and abiotic stresses lead to tapping panel dryness through the production of reactive oxygen species. Many microRNAs regulated during abiotic stress modulate growth and development. The objective of this paper was to study the regulation of microRNAs in response to different types of abiotic stress and hormone treatments in Hevea. Regulation of MIR genes differs depending on the tissue and abiotic stress applied. A negative co-regulation between HbMIR398b with its chloroplastic HbCuZnSOD target messenger is observed in response to salinity. The involvement of MIR gene regulation during latex harvesting and tapping panel dryness (TPD) occurrence is further discussed.  相似文献   

2.
Ethylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host’s immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plant- and pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisation.  相似文献   

3.
4.
5.
Apples are a major horticultural crop worldwide. Grafting techniques are widely utilized in apple production to keep the varieties pure. Interstocks are frequently used in Northern China to achieve intensive apple dwarfing cultivation. High-throughput sequencing was used to investigate differentially expressed genes in the phloem tissues of two different xenograft systems, M (‘Gala’/‘Mac 9’/Malus baccata (L.) Borkh.) and B (‘Gala’/Malus baccata (L.) Borkh.). The results showed that dwarfing interstocks could significantly reduce the height and diameters of apple trees while have few effects on the growth of annual branches. The interstocks were found to regulate the expression of genes related to hormone metabolism and tree body control (GH3.9, PIN1, CKI1, ARP1, GA2ox1 and GA20ox1), these effects may attribute the dwarf characters for apple trees with interstocks. Besides, the interstocks reduce photosynthesis-related genes (MADH-ME4 and GAPC), promote carbon (C) metabolism gene expression (AATP1, GDH and PFK3), promote the expression of nitrogen (N)-metabolism-related genes (NRT2.7, NADH and GDH) in rootstocks, and improve the expression of genes related to secondary metabolism in scions (DX5, FPS1, TPS21 and SRG1). We also concluded that the interstocks acquired early blooming traits due to promotion of the expression of flowering genes in the scion (MOF1, FTIP7, AGL12 and AGL24). This study is a valuable resource regarding the molecular mechanisms of dwarf interstocks’ influence on various biological processes and transplantation systems in both scions and rootstocks.  相似文献   

6.
F-box genes play an important role in plant growth and resistance to abiotic and biotic stresses. To date, systematic analysis of F-box genes and functional annotation in eggplant (Solanum melongena) is still limited. Here, we identified 389 F-box candidate genes in eggplant. The domain study of F-box candidate genes showed that the F-box domain is conserved, whereas the C-terminal domain is diverse. There are 376 SmFBX candidate genes distributed on 12 chromosomes. A collinearity analysis within the eggplant genome suggested that tandem duplication is the dominant form of F-box gene replication in eggplant. The collinearity analysis between eggplant and the three other species (Arabidopsis thaliana, rice and tomato) provides insight into the evolutionary characteristics of F-box candidate genes. In addition, we analyzed the expression of SmFBX candidate genes in different tissues under high temperature and bacterial wilt stress. The results identified several F-box candidate genes that potentially participate in eggplant heat tolerance and bacterial wilt resistance. Moreover, the yeast two-hybrid assay showed that several representative F-box candidate proteins interacted with representative Skp1 proteins. Overexpression of SmFBX131 and SmFBX230 in tobacco increased resistance to bacterial wilt. Overall, these results provide critical insights into the functional analysis of the F-box gene superfamily in eggplant and provide potentially valuable targets for heat and bacterial resistance.  相似文献   

7.
8.
9.
Ethylene Production and Peroxidase Activity in Aphid-Infested Barley   总被引:8,自引:0,他引:8  
The purpose of this work was to investigate whether ethylene is involved in the oxidative and defensive responses of barley to the aphids Schizaphis graminum (biotype C) and Rhopalophum padi. The effect of aphid infestation on ethylene production was measured in two barley cultivars (Frontera and Aramir) that differ in their susceptibility to aphids. Ethylene evolution was higher in plants infested for 16 hr than in plants infested for 4 hr in both cultivars. Under aphid infestation, the production of ethylene was higher in cv. Frontera than in Aramir, the more aphid susceptible cultivar. Ethylene production also increases with the degree of infestation. Maximum ethylene evolution was detected after 16 hr when plants were infested with 10 or more aphids. Comparing the two species of aphids, Schizaphis graminum induced more ethylene evolution than Rhopalosiphum padi. Infestation with S. graminum increased hydrogen peroxide content and total soluble peroxidase activity in cv. Frontera, with a maximum level of H2O2 observed after 20 min of infestation and the maximum in soluble peroxidase activity after 30 min of infestation. When noninfested barley seedlings from cv. Frontera were exposed to ethylene, an increase in hydrogen peroxide and in total peroxidase activity was detected at levels similar to those of infested plants from cv. Frontera. When noninfested plants were treated with 40 ppm of ethylene, the maximum levels of H2O2 and soluble peroxidase activity were at 10 and 40 min, respectively. Ethylene also increased the activity of both cell-wall-bound peroxidases types (ionically and covalently bound), comparable with infestation. These results suggest that ethylene is involved in the oxidative responses of barley plants induced by infestation.  相似文献   

10.
The effect of exogenously-applied ethylene sourced from ethephon (2-chloroethyl phosphonic acid)was studied on photosynthesis, carbohydrate metabolism, and high-temperature stress tolerance in Taipei-309 and Rasi cultivars of rice (Oryza sativa L.). Heat stress increased the content of H2O2 and thiobarbituric acid reactive substances (TBARS)more in Rasi than Taipei-309. Further, a significant decline in sucrose, starch, and carbohydrate metabolism enzyme activity and photosynthesis was also observed in response to heat stress. The application of ethephon reduced H2O2 and TBARS content by enhancing the enzymatic antioxidant defense system and improved carbohydrate metabolism, photosynthesis, and growth more conspicuously in Taipei-309 under heat stress. The ethephon application enhanced photosynthesis by up-regulating the psbA and psbB genes of photosystem II in heat-stressed plants. Interestingly, foliar application of ethephoneffectively down-regulated high-temperature-stress-induced elevated ethylene biosynthesis gene expression. Overall, ethephon application optimized ethylene levels under high-temperature stress to regulate the antioxidant enzymatic system and carbohydrate metabolism, reducing the adverse effects on photosynthesis. These findings suggest that ethylene regulates photosynthesis via carbohydrate metabolism and the antioxidant system, thereby influencing high-temperature stress tolerance in rice.  相似文献   

11.
12.
The antioxidant activity of natural compounds consists in their ability to modulate gene and protein expression, thus inducing an integrated cell protective response and repair processes against oxidative stress. New screening tools and methodologies are crucial for the actual requirement of new products with antioxidant activity to boost endogenous oxidative stress responsive pathways, Reactive Oxygen Species (ROS) metabolism and immune system activity, preserving human health and wellness. In this study, we performed and tested an integrated oxidative stress analysis, using DPPH assay and PNT2 cells injured with DPPH. We firstly investigated the mechanism of action of the oxidising agent (DPPH) on PNT2 cells, studying the variation in cell viability, oxidative stress genes, inflammatory mediator and ROS levels. The results reveal that DPPH activated ROS production and release of Prostaglandin E2 in PNT2 at low and intermediate doses, while cells switched from survival to cell death signals at high doses of the oxidising agent. This new in vitro oxidative stress model was validated by using Trolox, β-carotene and total extract of the green microalga Testraselmis suecica. Only the T. suecica extract can completely counteract DPPH-induced injury, since its chemical complexity demonstrated a multilevel protecting and neutralising effect against oxidative stress in PNT2.  相似文献   

13.
14.
Temperature-programmed desorption (TPD) and Density Functional Theory (DFT) were used to investigate the reactions of oxametallacycles derived from ethylene oxide on clean and oxygen-covered Ag(110) surfaces. Ethylene oxide ring-opens following adsorption at 250 K on both clean and O-covered Ag(110) to form a stable oxametallacycle. On the clean Ag(110) surface, the oxametallacycle reacts to reform the parent epoxide at 280 K during TPD, while the aldehyde isomer, acetaldehyde, is observed at higher oxametallacycle coverages. In the presence of coadsorbed oxygen atoms, a portion of the oxametallacycles dissociate to release ethylene. However, of those that react to form oxygen-containing products, the fraction forming ethylene oxide is similar to that on the clean surface. The acetaldehyde product of oxametallacycle reactions combusts via formation of acetate species; the acetates react to form CO2 at temperatures as low as 360 K on the O-covered surface. No evidence was observed for other combustion channels. This work provides experimental evidence for the connection of oxametallacycles to combustion via acetaldehyde formation as well as to ring-closure to form ethylene oxide.  相似文献   

15.
This study considered how host plant allelochemicals may contribute to defense against insects and fungi that jointly colonize the subcortical tissues of trees, the relative roles of constitutive and inducible chemistry in these defenses, and how the actions of two different feeding guilds might be interrelated. Our model consisted of the coniferous treePinus resinosa, the root- and lower stem-colonizing beetlesHylastes porculus andDendroctonus valens, and their associated fungiLeptographium procerum andL. terebrantis, and the stem-colonizing bark beetleIps pini and its associated fungusOphiostoma ips. In a novel bioassay, extracts from reaction tissue elicted by wound inoculation withL. terebrantis were more repellent to beetles than were similar extracts from constitutive or mechanically wounded tissue. The effect on beetle behavior was more pronounced in nonpolar extracts, which contain mostly monoterpenes, than in polar extracts, which contain mostly phenolics. Synthetic monoterpenes at concentrations present in the various tissues exerted similar effects and were likewise repellent in dose-response experiments. Growth ofL. procerum andL. terebrantis was inhibited by polar extracts from constitutive and reaction tissue. Inhibition was higher in wounded than control tissue, but the inhibition response did not vary with the type of wounding. Synthetic monoterpenes strongly inhibited spore germination and mycelial growth of both fungi. Colonization of red pine roots byLeptographium spp. altered the subsequent effects of extracts of stem phloem tissue onI. pini. These effects varied with host condition. Beetles preferred extracts from constitutive stem phloem tissue of healthy trees to that of root-diseased trees. However, extracts from reaction tissues of healthy trees were more repellent toI. pini than were the reaction tissues of root-diseased trees. The implications of these results to plant defense against insect-fungal complexes and interactions among different feeding guilds are discussed.  相似文献   

16.
17.
Cytochrome P450 monooxygenases (P450s) catalyze a great number of biochemical reactions and play vital roles in plant growth, development and secondary metabolism. As yet, the genome-scale investigation on P450s is still lacking in the model legume Medicago truncatula. In particular, whether and how many MtP450s are involved in drought and salt stresses for Medicago growth, development and yield remain unclear. In this study, a total of 346 MtP450 genes were identified and classified into 10 clans containing 48 families. Among them, sixty-one MtP450 genes pairs are tandem duplication events and 10 MtP450 genes are segmental duplication events. MtP450 genes within one family exhibit high conservation and specificity in intron–exon structure. Meanwhile, many Mt450 genes displayed tissue-specific expression pattern in various tissues. Specifically, the expression pattern of 204 Mt450 genes under drought/NaCl treatments were analyzed by using the weighted correlation network analysis (WGCNA). Among them, eight genes (CYP72A59v1, CYP74B4, CYP71AU56, CYP81E9, CYP71A31, CYP704G6, CYP76Y14, and CYP78A126), and six genes (CYP83D3, CYP76F70, CYP72A66, CYP76E1, CYP74C12, and CYP94A52) were found to be hub genes under drought/NaCl treatments, respectively. The expression levels of these selected hub genes could be induced, respectively, by drought/NaCl treatments, as validated by qPCR analyses, and most of these genes are involved in the secondary metabolism and fatty acid pathways. The genome-wide identification and co-expression analyses of M. truncatula P450 superfamily genes established a gene atlas for a deep and systematic investigation of P450 genes in M. truncatula, and the selected drought-/salt-responsive genes could be utilized for further functional characterization and molecular breeding for resistance in legume crops.  相似文献   

18.
19.
Powdery mildew (PM), caused by fungus Erysiphe necator, is one of the most devastating diseases of grapevine. To better understand grapevine-PM interaction and provide candidate resources for grapevine breeding, a suppression subtractive hybridization (SSH) cDNA library was constructed from E. necator-infected leaves of a resistant Chinese wild Vitis quinquangularis clone “Shang-24”. A total of 492 high quality expressed sequence tags (ESTs) were obtained and assembled into 266 unigenes. Gene ontology (GO) analysis indicated that 188 unigenes could be assigned with at least one GO term in the biological process category, and 176 in the molecular function category. Sequence analysis showed that a large number of these genes were homologous to those involved in defense responses. Genes involved in metabolism, photosynthesis, transport and signal transduction were also enriched in the library. Expression analysis of 13 selected genes by qRT-PCR revealed that most were induced more quickly and intensely in the resistant material “Shang-24” than in the sensitive V. pseudoreticulata clone “Hunan-1” by E. necator infection. The ESTs reported here provide new clues to understand the disease-resistance mechanism in Chinese wild grapevine species and may enable us to investigate E. necator-responsive genes involved in PM resistance in grapevine germplasm.  相似文献   

20.
Herbivory byThrips tabaci affected production of the phytohormone ethylene from living onion foliage. Ethylene analysis was performed by gas chromatography on intact onion tissue. Thrips feeding damage and a crushed thrips extract stimulated significantly greater production of eihylene than could be explained by either one-time or semicontinuous mechanical damage alone, suggesting that ethylene-inducing cues may be transferred to the plant during feeding. This is the first demonstration of increased ethylene production from insect-infested intact plants. This study suggests that herbivores affect both the phytohormone physiology and secondary chemistry of living plants because ethylene has been shown to enhance production of defensive phytochemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号