首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CuInS2 thin films were prepared by sol–gel dip-coating method on glass substrates using 0.75, 1 and 1.25 ratios of Cu/In in the solution. The prepared films were annealed at 380 °C, 420 °C and 460 °C for 30 min under argon environment. The structural, optical, morphological and composition properties of those were investigated by X-ray diffraction (XRD), UV–vis transmittance spectroscopy and scanning electron microscopy with an energy dispersive X-ray spectrometer. The XRD results showed that the films exhibit polycrystalline tetragonal CuInS2 phase with (112) orientation. According to the EDX results the Cu/In ratios of the films were respectively 0.65, 0.92 and 1.35 for the Cu/In ratios of 0.75, 1 and 1.25 in the solutions. The optical band gap was found to be between 1.30 eV and 1.43 eV, depending on Cu/In ratio.  相似文献   

2.
We studied the growth of CuInS2 thin films by single-source evaporation of CuInS2 powder in a high-vacuum system with a base pressure of 10?3 Pa. After evaporation, the films were annealed in a sulfur atmosphere at temperatures from 200 to 500 °C for 1 h. XRD curves and Raman spectra of the films demonstrated that chalcopyrite CuInS2 was the major crystalline phase. The morphology of CuxS exhibited a star-like structure, which we report for the first time. The phase composition and optical properties of our polycrystalline thin films were effectively modified by annealing in S. For films annealed at 200 and 350 °C, a secondary CuIn11S17 phase appeared, which may be related to solid-state reaction in the S atmosphere. This secondary CuIn11S17 phase has not been widely reported in previous studies. After annealing at 500 °C, only a chalcopyrite phase was detected, with bandgap energy of 1.46 eV, which is nearly identical to the optimal bandgap energy (1.5 eV) of single-crystal CuInS2. This indicates that the composition of the CuInS2 film annealed at 500 °C was nearly stoichiometric. The bandgap of the samples first increased and then decreased with increasing annealing temperature, which may be attributed to an increase in grain size, the secondary CuIn11S17 phase, and deviation from stoichiometry.  相似文献   

3.
Highly transparent, low resistive pure and Sb, Zn doped nanostructured SnO2 thin films have been successfully prepared on glass substrates at 400° C by spray pyrolysis method. Structural, electrical and optical properties of pure and Sb, Zn doped SnO2 thin films are studied in detail. Powder X-ray diffraction confirms the phase purity, increase in crystallinity, size of the grains (90–45 nm), polycrystalline nature and tetragonal rutile structure of thin films. The scanning electron microscopy reveals the continuous change in surface morphology of thin films and size of the grains decrease due to Sb, Zn doping in to SnO2. The optical transmission spectra of SnO2 films as a function of wavelength confirm that the optical transmission increases with Sb, Zn doping remarkably. The optical band gap of undoped film is found to be 4.27 eV and decreases with Sb, Zn doping to 4.19 eV, 4.07 eV respectively. The results of electrical measurements indicate that the sheet resistance of the deposited films improves with Sb, Zn doping. The Hall measurements confirm that the films are degenerate n-type semiconductors.  相似文献   

4.
In this study, the annealing effect on structural, electrical and optical properties of CuIn2n+1S3n+2 thin films (n=0, 1, 2 and 3) are investigated. CuIn2n+1S3n+2 films were elaborated by vacuum thermal evaporation and annealed at 150 and 250 °C during 2 h in air atmosphere. XRD data analysis shows that CuInS2 and CuIn3S5 (n=0 and 1) crystallize in the chalcopyrite structure according to a preferential direction (112), CuIn5S8 and CuIn7S11 (n=2 and 3) crystallize in the cubic spinel structure with a preferential direction (311). The optical characterization allowed us to determine the optical constants (refractive indexes 2.2–3.1, optical thicknesses 250–500 nm, coefficients of absorption 105 cm?1, coefficients of extinction <1, and the values of the optical transitions 1.80–2.22 eV) of the samples of all materials. We exploited the models of Cauchy, Wemple–DiDomenico and Spitzer–Fan for the analysis of the dispersion of the refractive index and the determination of the optical and dielectric constants.  相似文献   

5.
ZnS thin films were deposited from four different zinc salts on glass substrates by chemical bath deposition method. Different anions of zinc salts affect the deposition mechanism and growth rate, which influence the properties of the films significantly. The ZnS thin film deposited from ZnSO4 is smoother, thicker, more homogeneous and compact, nearly stoichiometric, comparing with the films deposited from Zn(CH3COO)2 and Zn(NO3)2, and ZnCl2. The scratch test of bonding force between ZnS film and substrate shows that the ZnS film deposited from ZnSO4 has the most excellent adhesion with the substrate. The presence of SO42− promotes heterogeneous ZnS thin film growth via ions by ions deposition, and the films deposited from Zn(CH3COO)2 and Zn(NO3)2 are formed via clusters by clusters deposition. XRD and HRTEM results show that cubic ZnS films are obtained after single deposition, and the grain size of ZnS thin film deposited from ZnSO4 for 2.5 h is 10 nm. The average transmission of all films is greater than 85% in the wavelength ranging from 600 to 1100 nm, and the transmission of films deposited from ZnSO4 or Zn(NO3)2 for 1.5, 2 and 2.5 h is greater than 85% in the wavelength varying from 340 to 600 nm, which can enhance the blue response. The band gaps of all ZnS thin films are in the range of 3.88–3.99 eV. After annealing treatment, the mechanical and optical properties of the ZnS thin film deposited from ZnSO4 are improved significantly.  相似文献   

6.
Polycrystalline Cadmium Telluride (CdTe) thin films were prepared on glass substrates by thermal evaporation at the chamber ambient temperature and then annealed for an hour in vacuum ~1×10−5 mbar at 400 °C. These annealed thin films were doped with copper (Cu) via ion exchange by immersing these films in Cu (NO3)2 solution (1 g/1000 ml) for 20 min. Further these films were again annealed at different temperatures for better diffusion of dopant species. The physical properties of an as doped sample and samples annealed at different temperatures after doping were determined by using energy dispersive x-ray analysis (EDX), x-ray diffraction (XRD), Raman spectroscopy, transmission spectra analysis, photoconductivity response and hot probe for conductivity type. The optical band gap of these thermally evaporated Cu doped CdTe thin films was determined from the transmission spectra and was found to be in the range 1.42–1.75 eV. The direct energy band gap was found annealing temperatures dependent. The absorption coefficient was >104 cm−1 for incident photons having energy greater than the band gap energy. Optical density was observed also dependent on postdoping annealing temperature. All samples were found having p-type conductivity. These films are strong potential candidates for photovoltaic applications like solar cells.  相似文献   

7.
Copper indium disulfide (CuInS2) thin films were prepared by chemical bath deposition in an acid medium on glass substrates. CuInS2 films were grown using CuSO4, InCl3 and C2H5NS as copper, indium and sulfur sources, respectively. The CuSO4 and C2H5NS concentrations remained constant, while the InCl3 concentration was varied from 0.002 M to 0.025 M. The structural analysis show that initially the films have a mixture of CuS and CuInS2 phases, when the indium nominal concentration increases the formation of CuInS2 ternary compound was promoted until the final formation of a CuInS2 film. The morphological study shows that the surface of CuInS2 films is constituted by nanotubes. The structural and compositional analysis show that for 0.025 M InCl3 concentration CuInS2 films were obtained.  相似文献   

8.
ZnO films were deposited on glass substrates in the temperature range of 350–470 °C under an atmosphere of compressed air or nitrogen (N2) by using ultrasonic spray pyrolysis technique. Structural, electrical and optical properties of the ZnO films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical two-probe and optical transmittance measurements. The ZnO films deposited in the range of 350–430 °C were polycrystalline with the wurtzite hexagonal structure having preferred orientation depending on the substrate temperature. The ZnO films deposited below 400 °C had a preferred (100) orientation while those deposited above 400 °C mostly had a preferred (002) orientation. The resistivity values of ZnO films depended on the types of carrier gas. The ZnO thin films deposited under N2 atmosphere in the range of 370–410 °C showed dense surface morphologies and resistivity values of 0.6–1.1 Ω-cm, a few orders of magnitude lower than those deposited under compressed air. Hydrogen substition in ZnO possibly contributed to decreasing resistivity in ZnO thin films deposited under N2 gas. The Hall measurements showed that the behavior of ZnO films deposited at 410 °C under the N2 atmosphere was n-type with a carrier density of 8.9–9.2×1016 cm-3 and mobility of ~70 cm2/Vs. ZnO thin films showed transmission values at 550 nm wavelength in a range of 70–80%. The values of band gaps extrapolated from the transmission results showed bandgap shrinkage in an order of milli electron volts in ZnO films deposited under N2 compared to those deposited under compressed air. The calculation showed that the bandgap reduction was possibly a result of carrier–carrier interactions.  相似文献   

9.
Fluorine doped tin oxide (FTO) films were fabricated on a glass substrate by a green sol–gel dip-coating process. Non-toxic SnF2 was used as fluorine source to replace toxic HF or NH4F. Effect of SnF2 content, 0–10 mol%, on structure, electrical resistivity, and optical transmittance of the films were investigated using X-ray diffraction, Hall effect measurements, and UV–vis spectra. Structural analysis revealed that the films are polycrystalline with a tetragonal crystal structure. Grain size varies from 43 to 21 nm with increasing fluorine concentration, which in fact critically impacts resultant electrical and optical properties. The 500 °C-annealed FTO film containing 6 mol% SnF2 shows the lowest electrical resistivity 7.0×10−4 Ω cm, carrier concentration 1.1×1021 cm−3, Hall mobility 8.1 cm2V−1 s−1, optical transmittance 90.1% and optical band-gap 3.91 eV. The 6 mol% SnF2 added film has the highest figure of merit 2.43×10−2 Ω−1 which is four times higher than that of un-doped FTO films. Because of the promising electrical and optical properties, F-doped thin films prepared by this green process are well-suited for use in all aspects of transparent conducting oxide.  相似文献   

10.
《Applied Superconductivity》1999,6(10-12):795-798
It is possible to produce HTSC thin films of polymer metal precursors by the simple spincoating technique. This method can be used to manufacture of Y–Ba–Cu–O- and Bi–Sr–Ca–Cu–O–HTSC thin films. The microbridges are generated into the precursor film by photolithography. The etching process step is cancelled. After that the superconducting phases are formed at 950°C respectively 865°C during the tempering process. The HTSC structures serve as a previous stage for SNS contact. The critical temperatures (Tc) measured on the 20 and 200 μm wide microbridges are 82 K for Y–Ba–Cu–O and 108 K for Bi–Sr–Ca–Cu–O. The critical current density (jc) obtained is 105 A/cm2 for 65 K.  相似文献   

11.
Cu(In, Ga)Se2 (CIGS) surface was modified with Zn doping using a magnetron sputtering method. CuInGa:Zn precursor films targeting a CuIn0.7Ga0.3Se2 stoichiometry with increasing Zn content from 0 to 0.8 at% were prepared onto Mo-coated glass substrates via co-sputtering of Cu–Ga alloy, In and Zn targets. The CuInGa:Zn precursors were then selenized with solid Se pellets. The structures and morphologies of grown Zn doped CIGS films were found to depend on the Zn content. At zinc doping level ranging between 0.2 and 0.6 at%, the Zn doping improved the crystallinity and surface morphology of CIGS films. Compared with the performance of the non-doped CIGS cell, the fabricated CIGS solar cell displayed a relative efficiency enhancement of 9–22% and the maximum enhancement was obtained at a Zn content of 0.4 at%.  相似文献   

12.
The present paper reports on a systematic study of the Cu doping effect on the optical, electrical and structural properties of ZnTe:Cu (Cu=0, 6, 8, and 10 at%) thin films. Polycrystalline Cu-doped ZnTe thin films were deposited on glass substrates at room temperature by thermal evaporation. A detailed characterization of the Cu-doped ZnTe films were performed by X-ray diffraction (XRD), Spectrophotometry, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. XRD of the as-deposited Cu-doped ZnTe films belong to single-phase cubic structure of ZnTe with preferential orientation along (111) planes revealed minor effect of Cu content. The interference pattern in optical transmission spectra was analyzed to determine energy band gap, refractive index, extinction coefficient and thickness of the films. Wemple–DiDomenico and Tauc's relation were used for the determination and comparison of optical band gap values. The formation of ZnTe and Cu-doped ZnTe phase was confirmed by FT-IR. AC conductivity in a frequency range of 0–7 MHz has been studied for investigation of the carriers hoping dynamics in the films. Raman spectra indicated merely typical longitudinal optical (LO) phonon mode of the cubic structure ZnTe thin film at 194 cm−1 because the excitation energy is well above of the optical band-gap of the material and exhibited a blue-shift from 194 to 203 cm−1 with Cu which could be associated to the substitution of Zn atom with Cu at the lattice sites.  相似文献   

13.
Copper (Cu) doped zinc oxide (ZnO) thin films were successfully prepared by a simple sol-gel spin coating technique. The effect of Cu doping on the structural, morphology, compositional, microstructural, optical, electrical and H2S gas sensing properties of the films were investigated by using XRD, FESEM, EDS, FTIR, XPS, Raman, HRTEM, and UV–vis techniques. XRD analysis shows that the films are nanocrystalline zinc oxide with the hexagonal wurtzite structure and FESEM result shows a porous structured morphology. The gas response of Cu-doped ZnO thin films was measured by the variation in the electrical resistance of the film, in the absence and presence of H2S gas. The gas response in relation to operating temperature, Cu doping concentration, and the H2S gas concentration has been systematically investigated. The maximum H2S gas response was achieved for 3 at% Cu-doped ZnO thin film for 50 ppm gas concentration, at 250 °C operating temperature.  相似文献   

14.
The aim of this work was to develop high quality of CuIn1−xGaxSe2 thin absorbing films with x (Ga/In+Ga)<0.3 by sputtering without selenization process. CuIn0.8Ga0.2Se2 (CIGS) thin absorbing films were deposited on soda lime glass substrate by RF magnetron sputtering using single quaternary chalcogenide (CIGS) target. The effect of substrate temperature, sputtering power & working pressure on structural, morphological, optical and electrical properties of deposited films were studied. CIGS thin films were characterised by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), Energy dispersive X-ray spectroscopy (EDAX), Atomic force microscopy (AFM), UV–vis–NIR spectroscopy and four probe methods. It was observed that microstructure, surface morphology, elemental composition, transmittance as well as conductivity of thin films were strongly dependent on deposition parameters. The optimum parameters for CIGS thin films were obtained at a power 100 W, pressure 5 mT and substrate temperature 500 °C. XRD revealed that thin film deposited at above said parameters was polycrystalline in nature with larger crystallite size (32 nm) and low dislocation density (0.97×1015 lines m−2). The deposited film also showed preferred orientation along (112) plane. The morphology of the film depicted by FE-SEM was compact and uniform without any micro cracks and pits. The deposited film exhibited good stoichiometry (Ga/In+Ga=0.19 and In/In+Ga=0.8) with desired Cu/In+Ga ratio (0.92), which is essential for high efficiency solar cells. Transmittance of deposited film was found to be very low (1.09%). The absorption coefficient of film was ~105 cm−1 for high energy photon. The band gap of CIGS thin film evaluated from transmission data was found to be 1.13 eV which is optimum for solar cell application. The electrical conductivity (7.87 Ω−1 cm−1) of deposited CIGS thin film at optimum parameters was also high enough for practical purpose.  相似文献   

15.
Tin oxide (SnO2) and chromium (Cr) doped tin oxide (Cr:SnO2) thin films were deposited on the preheated glass substrates at 673 K by spray pyrolysis. Concentration of Cr was varied in the solution by adding chromium (III) chloride hexahydrate from 0 to 3 at%. The effect of Cr doping on the structural, electrical and optical properties of tin oxide films is reported. X-ray diffraction pattern confirms the tetragonal crystal structure for undoped and Cr doped tin oxide films. Scanning electron microscopic photographs show the modification of surface morphology of tin oxide film due to varying concentration of Cr. X-ray photoelectron spectra of Cr:SnO2 (3 at%) thin film revealed the presence of carbon, tin, oxygen, and chromium. Carrier concentration and mobility of the SnO2 films decrease with increasing concentration of Cr and 0.5 at% Cr doped tin oxide film acquires a mobility of 70 cm2/V s. Average optical transmittance in the 550–850 nm range varies from 38% to 47% with varying Cr concentration in the solution.  相似文献   

16.
Thin films of vanadium cerium mixed oxides are good counter-electrodes for electrochromic devices because of their passive optical behavior and very good charge capacity. We deposited thin films of V–Ce mixed oxides on glass substrates by RF magnetron sputtering under argon at room temperature using different power settings. The targets were pressed into pellets of a powder mixture of V2O5 and CeO2 at molar ratios of 2:1, 1:1, and 1:2. For a molar ratio of 2:1, the resulting crystalline film comprised an orthorhombic CeVO3 phase and the average grain size was 89 nm. For molar ratios of 1:1 and 1:2, the resulting films were completely amorphous in nature. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy data confirmed these results. The optical properties of the films were studied using UV-Vis-NIR spectrophotometry. The transmittance and indirect allowed bandgap for the films increased with the RF power, corresponding to a blue shift of the UV cutoff. The average transmittance increased from 60.9% to 85.3% as the amount of CeO2 in the target material increased. The optical bandgap also increased from 1.94 to 2.34 eV with increasing CeO2 content for films prepared at 200 W. Photoacoustic amplitude (PA) spectra were recorded in the range 300–1000 nm. The optical bandgap was calculated from wavelength-dependent normalized PA data and values were in good agreement with those obtained from UV-Vis-NIR data. The thermal diffusivity calculated for the films increased with deposition power. For thin films deposited at 200 W, values of 53.556×10−8, 1.069×10−8, and 0.2198×10−8 m2/s were obtained for 2:1, 1:1, and 1:2 V2O5/CeO2, respectively.  相似文献   

17.
In the paper, SnOx thin films were deposited by reactive magnetron sputtering from a tin target in O2 containing working gas. The evolution from Sn-containing SnO to tetravalent SnO2 films was investigated. The films could be classified into three groups according to their optical band gaps, which are Eg<2.5 eV, Eg=3.0–3.3 eV and Eg>3.7 eV. The electric measurements show that high conductivity can be obtained much easier in SnO2 than in SnO films. A high electron mobility of 15.7 cm2 V−1 s−1, a carrier concentration of 1.43×1020 cm−3 and a resistivity of 2.8×103 Ω cm have been achieved in amorphous SnO2 films. Films with the optical band gap of 3.0–3.3 eV remain amorphous though the substrate temperature is as high as 300 °C, which implies that °btaining high mobility in p-type SnO is more challenging in contrast to n-type SnO2 films.  相似文献   

18.
Copper indium sulpho selenide films of different composition were deposited by the pulse plating technique at 50% duty cycle (15 s ON and 15 s OFF). X-ray diffraction studies indicated the formation of single phase chalcopyrite copper indium sulpho selenide films. Transmission Electron Microscope studies indicated that the grain size increased from 10 nm–40 nm as the selenium content increased. The band gap of the films was in the range of 0.95 eV–1.44 eV. Room temperature resistivity of the films is in the range of 16.0 Ω cm–33.0 Ω cm. Films of different composition used in photoelectrochemical cells have exhibited photo output. Films of composition, CuInS0.9Se0.1 have exhibited maximum output, a VOC of 0.74 V, JSC of 18.50 mA cm?2, ff of 0.75 and efficiency of 11.40% for 60 mW cm?2 illumination.  相似文献   

19.
Copper indium sulfide (CISu) films were deposited by the pulse galvanostatic deposition technique at different duty cycles. The films are polycrystalline with peaks corresponding to the chalcopyrite phase of CISu. The grain size and surface roughness increased from 10 to 25 nm and 0.85 to 2.50 nm respectively with increase of duty cycle. Optical band gap in the range of 1.30–1.51 eV was observed for the films deposited at different duty cycles. Room temperature resistivity of the films is in the range of 0.1–3.67 Ω cm. Photoconductivity measurements were made at room temperature. Photocurrent spectra exhibited maximum corresponding to the band gap of copper indium sulphide. CdS/CuInS2 fabricated with CISu films deposited at 50% duty cycle have exhibited a Voc of 0.62 V, Jsc of 16.30 mA cm?2, FF of 0.71 and efficiency of 7.16%.  相似文献   

20.
The barrier properties and failure mechanism of sputtered Hf, HfN and multilayered HfN/HfN thin films were studied for the application as a Cu diffusion barrier in metallization schemes. The barrier capability and thermal stability of Hf, HfN and HfN/HfN films were determined using X-ray diffraction (XRD), leakage current density, sheet resistance (Rs) and cross-sectional transmission electron microscopy (XTEM). The thin multi-amorphous-like HfN thin film (10 nm) possesses the best barrier capability than Hf (50 nm) and amorphous-like HfN (50 nm). Nitrogen incorporated Hf films possess better barrier performance than sputtered Hf films. The Cu/Hf/n+–p junction diodes with the Hf barrier of 50 nm thickness were able to sustain a 30-min thermal annealing at temperature up to 500 °C. Copper silicide forms after annealing. The Hf barrier fails due to the reaction of Cu and the Hf barrier, in which Cu atoms penetrate into the Si substrate after annealing at high temperature. The thermal stabilities of Cu/Hf/n+–p junction diodes are enhanced by nitrogen incorporation. Nitrogen incorporated Hf (HfN, 50 nm) diffusion barriers retained the integrity of junction diodes up to 550 °C with lower leakage current densities. Multilayered amorphous-like HfN (10 nm) barriers also retained the integrity of junction diodes up to 550 °C even if the thickness is thin. No copper–hafnium and copper silicide compounds are found. Nitrogen incorporated hafnium diffusion barrier can suppress the formation of copper–hafnium compounds and copper penetration, and thus improve the thermal stability of barrier layer. Diffusion resistance of nitrogen-incorporated Hf barrier is more effective. In all characterization techniques, nitrogen in the film, inducing the microstructure variation appears to play an important role in thermal stability and resistance against Cu diffusion. Amorphousization effects of nitrogen variation are believed to be capable of lengthening grain structures to alleviate Cu diffusion effectively. In addition, a thin multilayered amorphous-like HfN film not only has lengthening grain structures to alleviate Cu diffusion, but block and discontinue fast diffusion paths as well. Hence, a thin multilayered amorphous-like HfN/HfN barrier shows the excellent barrier property to suppress the formation of high resistance η′-(Cu,Si) compound phase to 700 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号