首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
采用ANSYS10.0软件建立电磁搅拌条件下真空自耗电弧熔炼过程三维电磁场数学模型,计算电流密度和磁场强度,并对比分析搅拌磁场对电磁力的影响.结果表明:电流沿坩埚壁向下流动,并在铸锭与坩埚的接触部位转为横向流动,在铸锭表面横向电流最大;随着熔炼的进行,铸锭上部自感磁场基本不变,下部的自感磁场强度减小;搅拌磁场的添加使得铸锭表面产生水平旋转洛伦兹力,且磁感应强度和功率损失随电流频率的增大而增大.  相似文献   

2.
采用ANSYS软件分析了真空自耗电弧熔炼(VAR)过程中温度场的分布规律,探讨了熔炼速率和冷却条件对VAR过程中熔池形貌的影响。结果表明,在一定熔炼速率下,VAR过程中温度场由初始阶段的动态过程逐渐演变为稳态过程;熔炼速率对VAR过程温度场影响显著,表现为随熔炼速度增大,VAR熔池变宽变深,达到稳态熔炼阶段的时间缩短;而冷却条件仅对VAR过程熔池达到稳态阶段的时间和铸锭高度略有影响。  相似文献   

3.
钛合金真空自耗电弧熔炼技术发展   总被引:1,自引:0,他引:1  
目前,生产钛及钛合金铸锭的基本方法仍为真空自耗电弧熔炼方法。讨论了真空自耗电弧熔炼钛合金的常见铸锭缺陷和预防措施。回顾了近代真空自耗电弧熔炼(VAR)技术的发展。较详细地介绍了为获得更高质量的铸锭,当前对VAR熔炼过程控制技术所作的努力及取得的进展。指出了未来真空自耗电弧熔炼控制技术的发展方向。  相似文献   

4.
真空自耗电弧熔炼中电磁搅拌的数值模拟   总被引:1,自引:0,他引:1  
利用ANSYS软件对真空白耗电弧熔炼的电磁搅拌过程进行三维模拟计算,分析重熔电流、磁场和洛伦兹力的分布情况,讨论了搅拌线圈对磁场和搅拌力的影响.结果表明:重熔电流从坩埚擘经熔池表面流回电极,铸锭和坩埚底部几乎没有电流;重熔电流产生环绕对称轴的磁场,磁场强度从电极中心到坩埚外壁呈先增大后减小的趋势;搅拌线圈产生平行于对称轴的磁场,其磁感应强度在铸锭部分呈均匀分布;施加搅拌线圈产生了使熔池发生旋转的洛伦兹力.  相似文献   

5.
采用MeltFlow VAR软件建立了真空自耗电弧熔炼(VAR)过程中温度、电磁、流动和溶质场的耦合模型,通过数值模拟与实验验证的方法研究了搅拌电流和周期对TC17钛合金铸锭成分和组织的影响规律。结果表明,铸锭中心的Cr元素浓度从底部逐渐升高,在铸锭头部100 mm范围内出现激增,与铸锭边缘和1/2半径处表现出不同的趋势。施加搅拌磁场,有利于铸锭心部Cr元素的降低和1/2直径处等轴晶区域宽度的减小。增加搅拌线圈电流或延长搅拌磁场的周期,可以降低铸锭心部Cr元素含量并减小1/2直径处等轴晶区域宽度。这主要是因为搅拌磁场引起的角速度,加剧了熔池内湍流的速度。采用工程化规格的TC17铸锭实物解剖可知,铸锭下部柱状晶生长方向发生扰动的位置与Cr含量上升的位置相对应,均与该位置搅拌磁场的作用相关。数值模拟结果与实验数据吻合较好。  相似文献   

6.
采用ANSYS软件模拟真空非自耗电弧炉熔炼TiAl基和NbSi基合金的熔炼过程,通过模拟得到熔炼过程中的温度场数据,同时计算合金锭不同位置的冷却曲线以及相应的冷却速度曲线.并结合实际熔炼的Ti-47Al-2Cr-2Nb及Nb-16Si-22Ti-2Al-2Cr-2Hf合金锭,分析不同冷却速度节点处的微观组织均匀性.结果表明,冷却速度不同,导致合金锭微观组织不均匀,说明真空非自耗电弧熔炼方法虽简单易行,但其组织不均匀性影响了较大尺寸高温合金铸件的品质.  相似文献   

7.
采用Fluent软件模拟了钛合金TC4真空自耗熔炼过程中温度场、流场和溶质场相互作用,研究了与铸锭直接相关的3个工艺参数(熔速、铸锭上表面温度和冷却强度)对铸锭宏观偏析的影响规律。结果表明:不同熔炼条件下,在铸锭1000 mm高度处的铁元素径向偏析均呈钟形分布,即铸锭芯部为正偏析,表面区域为负偏析,且负偏析程度均大于正偏析。熔炼速度对铸锭温度场和宏观偏析的影响最为明显:当熔炼速度由0.15 mm/s增加到0.18 mm/s时,铸锭达到稳定熔炼阶段时的高度由1200 mm增加到1600 mm,熔池深度由494 mm增加到738 mm。当距铸锭中心距离小于130 mm时,偏析随熔炼速度增加而减小,在熔炼速度为0.15 mm/s时达到最大值,为3.36%;当距铸锭中心距离大于295 mm时,偏析随熔炼速度增大而增大,在熔炼速度为0.21 mm/s时达到最大值6.23%。铸锭上表面温度和冷却强度对宏观偏析和熔池深度的影响不明显。通过正交分析得到3个主要工艺参数对宏观偏析影响程度为:熔炼速度>冷却强度>铸锭上表面温度,并得到最优工艺参数为熔炼速度0.15 mm/s、铸锭上表面温度21...  相似文献   

8.
通过数值模拟研究了直径为180mm的TiAl合金铸锭的真空自耗冶炼过程,获得了TiAl合金真空自耗熔炼过程中熔炼温度、熔炼速度和冷却能力对金属熔池温度梯度、熔池形状和糊状区宽度的影响规律。结果表明,随熔炼温度升高,熔池深度增加,其形状由碗状向V形转变,熔炼温度对熔池中温度梯度和凝固前沿糊状区宽度影响较小;随熔炼速度增加,熔池中温度梯度显著减小,糊状区宽度和熔池深度则明显降低;随冷却能力增加,糊状区宽度明显减小,熔池中温度梯度和熔池深度略有减小。  相似文献   

9.
综述了当今真空自耗电弧炉装备和先进的钛熔炼工艺技术特点,讨论了钛铸锭存在的质量问题以及产生的原因和解决办法。  相似文献   

10.
钛及钛合金主要采用真空自耗电弧炉熔炼,但熔炼过程中存在严重的爆炸风险。通过对钛及钛合金真空自耗熔炼爆炸机理及征兆要素的分析,提出一种钛及钛合金真空自耗熔炼爆炸预警系统。系统采集真空度、熔炼电压、熔炼电流、冷却水温度和冷却水流量等征兆参数,构建了基于模糊神经网络的爆炸预警模型,依据爆炸征兆要素实现钛及钛合金真空自耗熔炼爆炸风险预警。实际运行结果表明,该预警系统能够实现真空自耗电弧炉爆炸预警,提高钛及钛合金冶炼的安全性。  相似文献   

11.
建立了多组元两相模型来描述IN718高温合金凝固过程中的宏观/微观传输和“黑斑”形成,并应用动态网格算法模拟真空电弧重熔(VAR)过程中的填充过程。首先,使用热力学计算方法求解液相成分随固相分数的变化,并获得多组元合金的枝晶间液相密度。之后模拟了水平定向凝固工艺下形成的“黑斑”,并与实验结果进行对比,研究其形成机理和影响因素。最后,利用所开发的模型来研究工艺参数对工业规模VAR铸锭中“黑斑”的影响。结果表明,元素组成对凝固过程中液相的密度变化有显著影响,“黑斑”的形成伴随着高热溶质对流强度。“黑斑”的生长方向由液相密度差和凝固界面相对重力方向的角度决定。在VAR过程中,熔池形状受电极熔化速率和冷却速率影响。  相似文献   

12.
为了进一步了解真空电弧重熔(VAR)过程,本文利用开源CFD计算软件OpenFOAM,基于有限体积法(FVM)建立了包括电磁场、温度场和流场的二维多场耦合模型来研究宏观非稳态下的GH4698镍基合金铸锭的凝固过程。结果表明,从坩埚流向自耗电极的电流所引发的磁场主要集中在铸锭的上部,并沿铸锭轴线旋转。磁感应强度由铸锭中心向边缘呈现先增大后减小的趋势,并在电极边缘处达到最大值。热浮力和洛伦兹力是熔池内的主要驱动力,并且它们对熔池流动的影响正好相反。  相似文献   

13.
钛合金电磁铆接数值模拟   总被引:1,自引:0,他引:1  
为了更深入地认识钛合金铆钉成型时镦头内温度场的变化及其对绝热剪切带形成的影响,在ABAQUS平台上建立了3D有限元模型,综合考虑了材料的应变硬化、应变率硬化、热软化效应及摩擦和结构的非线性.计算表明:剪切带内应变高度集中,温升高达500℃,高温区域与剪切带基本重合,最高温度超过了其再结晶温度.  相似文献   

14.
钛合金筒形件真空热胀形壁厚效应的数值模拟   总被引:1,自引:0,他引:1  
建立了钛合金筒形件真空热胀形的二维非线性热力耦合有限元模型。使用有限元软件MSC-Marc对钛合金简形件真空热胀形过程进行数值模拟。计算了钛合金筒形件真空热胀形过程的温度场和变形场,并进行了相应的实验验证。模拟结果与实验结果吻合较好。用建立的模型对真空热胀形过程中钛合金筒形件壁厚效应进行数值模拟,讨论了一定工艺条件下钛合金筒形件壁厚与弯曲角度、胀形量和残余应力之间的关系,为实际生产中制定和优化钛合金筒形件真空热胀形工艺参数提供理论与实践依据。  相似文献   

15.
建立三维多尺度数学模型计算Ti-6Al-4V合金铸锭真空自耗电弧熔炼(VAR)过程中的温度场、流场及凝固组织的形成。该模型包括宏观质量、动量及能量守恒方程和介观晶粒形核生长模型。在传热与流动计算的基础上,模拟铸锭VAR过程中的三维凝固组织的形成。对比计算结果与实验观察可知,两者在晶粒结构与晶粒生长方式方面吻合较好。当考虑VAR过程中熔池表面的辐射换热后,铸锭顶部的柱状晶被很好地呈现。最后,考察了自然对流对铸锭凝固组织的影响,计算结果表明自然对流对柱状晶-等轴晶转变(CET)及晶粒尺寸影响较大,表现为促进CET及细化晶粒。  相似文献   

16.
张金林  陈红  郭培军  曲玉福  周跃 《铸造》2006,55(5):452-455
通过用真空自耗电极电弧凝壳熔铸炉,直接在熔化电极上配制合金,经一次熔炼后浇注成钛合金铸件。文中着重探讨了合金化的机理,并对熔铸后的钛合金铸件进行了化学成分分析、合金化均匀性、力学性能和金相组织的检验。证明了该熔铸工艺的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号