首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
近年来,深度神经网络(Deep Neural Networks, DNN)已被广泛应用于图像识别,目标检测,图像分割等多种计算机视觉任务中,并取得了巨大成功。然而,DNN模型因其本身的脆弱性,仍面临着对抗攻击等技术手段带来的安全隐患。攻击者在图像上恶意地添加微小且人眼难以识别的扰动,可以让模型产生高置信度的错误输出。针对上述问题,集成多个DNN模型来提升对抗鲁棒性已成为有效的解决方案之一。但是,对抗样本在集成模型中的子模型间存在对抗迁移现象,可能使集成模型的防御效能大大降低,而且目前仍缺乏能够降低集成防御内部对抗迁移性的直观理论分析。本文引入损失场的概念并定量描述DNN模型间的对抗迁移性,重点关注和推导对抗迁移表达式的上界,发现促进模型损失场之间的正交性以及降低模型损失场的强度(Promoting Orthogonality and Reducing Strength,PORS)可以限制其上界大小,进而限制DNN模型间对抗迁移性。本文引入PORS惩罚项至原损失函数中,使集成模型能够保持在原始数据上的识别性能的同时,通过降低子模型间的对抗迁移性来增强整体的对抗鲁棒性。文章在CIFAR-10和MNIST数据集上对由PORS训练得到的集成模型开展实验,分别在白盒和黑盒攻击环境下与其他先进的集成防御方法进行对比实验,实验结果表明PORS可以显著提高对抗鲁棒性,在白盒攻击和原始数据集上能保持非常高的识别精度,尤其在黑盒迁移攻击中极为有效,在所有集成防御方法中表现最为稳定。  相似文献   

2.
针对深度学习下的图像识别技术,研究了图像识别和卷积神经网络的工作原理。分析了AlexNet模型、ResNet模型、MobileNet模型的卷积神经网络模型,以及三种算法模型的各自特点,实现了深度学习环境的搭建,通过实验对比三个模型的分类准确率和训练效率,为深度学习下的图像识别算法研究提供参考。  相似文献   

3.
随着我国移动互联网技术的快速发展,微信,QQ,微博,手机应用等手机媒体的新起,以及智能手机,平板电脑和数码相机等移动设备的大量使用,与3G,4G,wifi等高速无线网络的不断普及,让更多的用户能够更快更方便的上传和浏览各种图像。但是,生活中还是有很多没有标记的图像,这些没有标记的图像很难进行搜索和处理,用户不能够更快的找到自己想要的图像,所以传统的图像分类识别方法并不能够满足现在的用户,还会给现在的用户在进行图像分类识别的时候造成一定的不便,浪费不必要的时间,尤其是在复杂环境下对自然图像的分类与识别。  相似文献   

4.
深度学习技术已广泛应用于图像分类和目标检测等计算机视觉核心任务,并取得了瞩目的进展。然而,深度学习模型因其高度的复杂性与内在的不确定性,极易成为对抗样本攻击的靶标。攻击者巧妙地利用数据中细微的、精心设计的扰动,诱导模型以极高的置信度输出错误结果,此类对抗样本对实际应用场景中模型的可靠性及安全性构成了严峻的挑战与潜在威胁。例如,攻击者可利用对抗眼镜误导人脸识别系统,导致身份误判,进而实施非法入侵、身份冒用等威胁公共安全和个人隐私的行为;也可对自动驾驶系统的监控数据添加对抗噪声,虽不破坏交通工具本身特征,却可能导致漏检重要交通工具,引发交通混乱甚至事故,造成严重后果。本文旨在梳理当前对抗攻击与对抗防御技术的研究现状。具体而言,内容涵盖以下三个方面:1)在概述对抗样本基本概念和分类的基础上,剖析了多种对抗攻击的形式和策略,并举例介绍了具有代表性的经典对抗样本生成方法;2)阐述对抗样本的防御方法,从模型优化、数据优化和附加网络三个方向系统梳理了当前提高模型对抗鲁棒性的各类算法,分析了各类防御方法的创新性和有效性;3)介绍对抗攻击和对抗防御的应用实例,阐述了大模型时代对抗攻击和防御的发展现状,分析了在实际应用中遇到的挑战及解决方案。最后本文对当前对抗攻击与防御方法进行了总结分析,并展望了该领域内未来的研究方向。  相似文献   

5.
TensorFlow是Google公司发布的开源人工智能深度学习框架,卷积神经网络是进行图像识别的一种有效方法。本文在研究Tensorflow深度学习框架以及卷积神经网络的基础上,利用keras官方下载的cifar数据集,采用LeNet-5算法对数据进行了处理、建模、训练、并对模型进行了评估以及保存,利用测试集完成测试后,不同图像识别的准确率有所不同,青蛙识别的准确率最高,为79%,汽车的识别准确率为78%,猫和狗的识别准确率最低,分别为41%和53%,所有图像识别的平均准确率为65%。  相似文献   

6.
图像识别是"图像处理"教学中的重要内容.本文在Linux环境下使用iTorch notebook可视化界面利用卷积神经网络实现mnist手写数字体的准确识别,并详细介绍卷积神经网络的原理,给出直观的实验结果.教学实践表明,通过具有应用性和趣味性的实验可以提高学生的积极性,加深对课程理论的认知,培养其分析问题和解决问题的能力.  相似文献   

7.
在大数据时代背景下,深度学习技术得到了快速发展,成功应用于数据挖掘、自然语言处理和计算机视觉等领域。研究表明,深度学习的抗干扰性能并不是很好,因此出现了对抗攻击与对抗防御生成技术,即对于干净样本输入添加肉眼所不能察觉的扰动,导致深度学习模型出现识别错误和分类错误的问题。主要介绍对抗攻击与对抗防御的概念、生成原理,在此基础上分析了对抗攻击及对抗防御的主要方法,通过分析提出了对未来研究前景的预测。  相似文献   

8.
类脑芯片中的脉冲神经网络(SNNs)具有高稀疏性和低功耗的特点,在视觉分类任务中存在应用优势,但仍面临对抗攻击的威胁。现有研究缺乏对网络部署到硬件的量化过程中鲁棒性损失的度量方法。该文研究硬件映射阶段的SNN权重量化方法及其对抗鲁棒性。建立基于反向传播和替代梯度的监督训练算法,并在CIFAR-10数据集上生成快速梯度符号法(FGSM)对抗攻击样本。创新性地提出一种感知量化的权重量化方法,并建立与对抗攻击的训练与推理相融合的评估框架。实验结果表明,在VGG9网络下,直接编码对抗鲁棒性最差。在权重量化前后,4种编码和4种结构参数组合方式下,推理精度损失差与层间脉冲活动的平均变化幅度分别增大73.23%和51.5%。该文指出稀疏性因素对鲁棒性的影响相关度为:阈值增加大于权重量化bit降低大于稀疏编码,所提对抗鲁棒性分析框架与权重量化方法在PIcore类脑芯片中得到了硬件验证。  相似文献   

9.
刘恋秋 《液晶与显示》2020,35(4):383-388
针对传统深度卷积生成网络收敛速度慢、稳定性较差的问题,本文在传统深度卷积生成对抗网络的基础上,提出了深度卷积生成对抗网络的优化算法。首先在预处理部分,融合了Canny算子和Prewitt算子的多个方向的卷积核来初始化输入图片参数,同时训练模块。为了减少训练时间,将训练分为3个阶段,每个阶段都采用不同的损失函数,从而提升网络的收敛速度及识别效果。最后再将训练后的判别网络中的卷积神经网络用来提取图像特征。LFW和CIFAR-100的实验证明,本文提出的算法具有很高的可行性和有效性,比传统生成对抗网络、CNN等图像识别具有更高的识别成功率,达到89.5%,为生成对抗网络在计算机视觉领域的应用提供了有益的参考。  相似文献   

10.
基于深度神经网络的多源图像内容自动分析与目标识别方法近年来不断取得新的突破,并逐步在智能安防、医疗影像辅助诊断和自动驾驶等多个领域得到广泛部署。然而深度神经网络的对抗脆弱性给其在安全敏感领域的部署带来巨大安全隐患。对抗鲁棒性的有效提升方法是采用最大化网络损失的对抗样本重训练深度网络,但是现有的对抗训练过程生成对抗样本时需要类别标记信息,并且会大大降低无攻击数据集上的泛化性能。本文提出一种基于自监督对比学习的深度神经网络对抗鲁棒性提升方法,充分利用大量存在的无标记数据改善模型在对抗场景中的预测稳定性和泛化性。采用孪生网络架构,最大化训练样本与其无监督对抗样本间的多隐层表征相似性,增强模型的内在鲁棒性。本文所提方法可以用于预训练模型的鲁棒性提升,也可以与对抗训练相结合最大化模型的“预训练+微调”鲁棒性,在遥感图像场景分类数据集上的实验结果证明了所提方法的有效性和灵活性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号