首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过Ugi反应疏水改性海藻酸钠(Alg),制备了两亲性的海藻酸衍生物(Ugi-Alg)。以聚甲基氢硅氧烷(PMHS)作为疏水改性剂,利用干法球磨对高岭土(KL)微粒表面疏水改性。并利用FTIR、1HNMR、接触角测量仪、激光粒度和Zeta电位分析仪对改性产物进行表征。用改性后的高岭土(MKL)协同Ugi-Alg制备稳定的Pickering乳液,并探究了水相p H对Pickering乳液形貌和液滴大小的影响。结果表明:Alg通过Ugi反应成功地疏水改性;PMHS在球磨的机械作用下吸附在KL微粒表面,使MKL成为具有高疏水性能的活性微粒;Ugi-Alg在超声作用下协同吸附在MKL微粒表面,改变了MKL微粒表面的润湿性,可提高Pickering乳液的稳定性;随着水相p H的升高,MKL/Ugi-Alg稳定的Pickering乳液液滴粒径逐渐减小,当p H=10.32时,其液滴粒径达到7.4μm。  相似文献   

2.
利用硅烷偶联剂KH550改性二氧化硅(SiO2),使丙胺基团接枝在SiO2上,得到氨基化二氧化硅(N-SiO2)。分别采用红外光谱(FTIR)、热重分析(TGA)、元素分析(EA)、粒径分析(DLS)、扫描电子显微镜(SEM)和接触角表征了SiO2改性前后的结构和性能。结果表明,硅烷偶联剂KH550成功接枝在SiO2上,改性后表面变得更粗糙,D50粒径由17.69μm增大到38.38μm,水接触角从0°提高到25.84°,改善了其亲水性。  相似文献   

3.
采用辛胺疏水改性海藻酸钠合成了具有两亲性的高分子表面活性剂海藻酸辛酰胺(OAAD),并将其与SiO2纳米颗粒协同制备了稳定的Pickering乳液。通过FTIR、1HNMR、表面张力、荧光光谱、动态光散射、接触角测量、光学显微镜分别对OAAD、OAAD/SiO2纳米颗粒水分散体系和Pickering乳状液的性能进行了表征。结果表明,辛胺氨基成功接枝到海藻酸钠(SA)分子链上,OAAD界面张力较SA降低、临界聚集质量浓度为0.60 g/L,表现出良好的两亲性。将OAAD吸附在SiO2纳米颗粒表面形成的水分散体系用于稳定Pickering乳液时,发现随着OAAD质量浓度增加,SiO2纳米颗粒润湿性增加,Zeta电位减少,粒径增加;而乳液的粒径则逐渐减少,稳定性增强,其机理经初步分析为,当一定浓度的OAAD吸附在SiO2纳米颗粒表面,可导致颗粒间絮凝,从而在油水界面形成网络结构式界面膜,有利于提高Pickering乳液的稳定性。  相似文献   

4.
以硝化纤维(NC)、丙烯酸(AA)、丙烯酸羟丙酯(HEPA)、六亚甲基二异氰酸酯(HDI)为主要原料,采用自乳化法制备了聚丙烯酸接枝共聚水性硝化纤维(PWNC)乳液,并进一步制成PWNC涂膜。采用FTIR、表面水接触角测量仪、TEM、TGA和Zeta电位测试了PWNC涂膜的化学结构、疏水性、胶粒形态、耐热性以及PWNC乳液的粒径大小;考察了AA与HEPA物质的量比、偶氮二异丁腈(AIBN)质量分数、HDI用量、单体聚合温度对PWNC乳液和涂膜的影响。结果表明:当n(AA)∶n(HEPA)=3∶1,AIBN质量分数为0.8%、HDI 5.05 g、聚合温度为80℃时,乳液胶粒呈球形,具有核壳结构。乳液粒子平均粒径和分散系数分别是52 nm和0.021;涂膜接触角增加至118.9°,相比于NC涂膜,PWNC涂膜具有优异的耐水性。  相似文献   

5.
以可逆加成断裂链转移(RAFT)聚合合成的聚甲基丙烯酸-N,N-二甲氨基乙酯-b-聚丙烯酸六氟丁酯(PDMAEMA-b-PHFBA)为稳定剂,通过无皂乳液聚合技术合成了阳离子型含氟聚丙烯酸酯无皂乳液。用FTIR、1HNMR、TEM、DLS对乳胶粒子和聚合物的结构进行了表征。结果表明,当PDMAEMA-b-PHFBA的用量为总加料质量的2.4%时,乳液的稳定性好,Zeta电位达+57.8 m V,转化率达97.6%,乳胶粒具有明显的核壳结构,粒径分布指数为0.058。将阳离子型含氟聚丙烯酸酯无皂乳液用于皮革涂饰后,随着丙烯酸六氟丁酯用量的增加,涂饰后的皮革对水和二碘甲烷的接触角逐渐增加,当丙烯酸六氟丁酯用量为总单体质量的10%时,涂饰后的皮革对水的接触角为125°,对二碘甲烷的接触角为81.5°。  相似文献   

6.
采用乙二胺基乙磺酸钠(AAS)作为亲水剂,在二月桂酸二丁基锡(DBTDL)的催化下,通过异佛尔酮二异氰酸酯(IPDI)将亲水基引入二醋酸纤维(CA)分子中,制得了一种氨基磺酸盐型水性醋酸纤维乳液(SWCA)。利用FTIR、DLS、黏度计、TEM、SEM、接触角测量仪、XRD、TGA,对SWCA结构及涂膜性能进行表征。考察了IPDI与AAS物质的量比对SWCA乳液粒径、黏度、涂膜表观形貌及耐水性的影响。结果表明:当n(IPDI)∶n(AAS)=1.1∶1时,乳液最稳定,微观形态呈水包油型(O/W)核壳结构,乳液粒径和分散系数(PDI)最小,分别为128nm和0.112,此时乳液表观黏度最大,为73.5m Pa·s,所成涂膜致密平整,接触角可达110.2°±2°,表现出明显的疏水性;此外,与二醋酸纤维相比,SWCA涂膜结晶性减弱,呈微晶态或次晶态结构,且具有较好的耐热性。  相似文献   

7.
恒温低能量乳化法制备水包油纳米乳液及其稳定性研究   总被引:1,自引:0,他引:1  
25℃下用恒温低能量乳化法在水/复配壬基酚聚氧乙烯醚/生物柴油的系统中,制备了稳定的水包油纳米乳液.通过体系的相行为研究得到了纳米乳液的形成条件;用动态光散射(DLS)与透射电镜(TEM)测试纳米乳液的颗粒形貌、粒径大小及分布;并通过DLS测试纳米乳颗粒粒径随时间的变化,探索了纳米乳不稳定机制.结果表明:纳米乳液是通过双连续微乳液稀释得到,颗粒粒径主要被双连续相结构所控制,而与乳液中最终水的质量分数无关;纳米乳液体系的颗粒为球形,多分散系数小于0.2,粒径分布主要在20 nm~35 nm;纳米乳液不稳定机制符合絮凝作用.  相似文献   

8.
以异氟尔酮二异氰酸酯(IPDI)、聚己二酸丁二醇酯(CMA-1044)、1,4-丁二醇(BDO)和二羟甲基丙酸(DMPA)为原料合成了以—NCO封端的聚氨酯预聚体(PU),然后加入超支化聚合物进行改性,合成了超支化聚氨酯(HBPU),再通过接枝反应使全氟己基乙醇(S104)与HBPU反应,制得了一种端氟烷基超支化聚氨酯(HBPUF)。用FTIR、1HNMR、TEM、DLS、TGA、XPS以及静态接触角测量仪对产物进行表征。结果表明:HBPUF乳胶粒具有明显的核-壳结构且乳液稳定性良好;HBPUF膜的热分解温度比PU膜提高了17.4℃、比HBPU膜提高了7.1℃。XPS分析表明:HBPUF膜中氟链段向表面迁移并富集,与PU膜相比,HBPUF膜表面的水接触角从77.8°增至113.9°,吸水率从136.2%降到11.1%,膜疏水性增强。  相似文献   

9.
以硝化纤维(NC)、丙烯酸(AA)、丙烯酸羟丙酯(HEPA)、六亚甲基二异氰酸酯(HDI)为主要原料,采用自乳化法制备聚丙烯酸接枝共聚水性硝化纤维(PWNC)乳液,进一步制成PWNC涂膜。采用傅里叶变换红外光谱(FT-IR)、表面水接触角测量仪、透射电子显微镜(TEM)、热重分析(TGA)、和纳米粒度表面电位分析仪考察了PWNC涂膜的化学结构、疏水性、胶粒形态、耐热性以及 PWNC乳液的粒径大小;探究了AA与HEPA摩尔比、DBTDL加入量对PWNC乳液和涂膜的影响。结果表明,当n( AA) ∶n( HEPA)∶n( HDI) = 3∶1∶0.75,NC用量为3.6g,DBTDL为0.112g时,所得PWNC乳液粒径较小且分布窄,乳液胶粒呈球形,具有核壳结构。制备乳液的平均粒径和分散系数分别是52nm和0. 021; 薄膜接触角增加至 118.9?,相比较NC涂膜,PWNC涂膜具有优异的耐水性。  相似文献   

10.
用具有氧化还原活性分子乙酰基二茂铁吖嗪(Fc+A)对磁性纳米颗粒Fe3O4@SiO2进行非共价疏水改性,将改性颗粒作为乳化剂制备Pickering乳液。通过TEM、SEM、FTIR、XRD、接触角测量、光学显微镜等对纳米颗粒及Pickering乳液的结构、形貌和性能进行表征。结果表明:制备的核壳结构纳米颗粒粒径为150 nm左右,分散均匀;Fc+A成功修饰到纳米颗粒表面,且随Fc+A浓度的增加,改性颗粒的接触角明显增大;Fc+A浓度为12.5 mmol/L,乳化剂浓度为0.3%(质量),油水比为4∶6,搅拌速率为10000 r/min,得到的Pickering乳液具有良好的稳定性。而且,所得乳液具双重响应性,通过氧化还原和磁场可实现对乳液稳定性的可逆调控。  相似文献   

11.
以改性纳米SiO_2粉体作为稳定剂稳定丙烯酸酯类单体,采用Pickering乳液聚合法制备聚丙烯酸酯/纳米SiO_2复合乳液。以单体转化率和乳液凝胶率为指标,对乳液聚合条件进行了优化,通过光学显微镜观察了乳状液的形貌,用动态激光散射(DLS)和透射电镜(TEM)、傅里叶红外光谱仪(FTIR)和扫描电镜(SEM)对乳液及其成膜进行了表征。结果表明,SiO_2与乙烯基三乙氧基硅烷(A-151)的质量比为5∶1、甲基丙烯酸甲酯与丙烯酸丁酯的质量比为1∶4时,乳液性能最优。DLS和TEM结果表明,复合乳液的粒径在790 nm左右;FTIR结果表明,复合乳液中有纳米SiO_2的存在;SEM结果表明,纳米SiO_2分散在复合乳液成膜中。将复合乳液应用于皮革涂饰中,应用结果表明,与聚丙烯酸酯乳液涂饰革样相比,Pickering乳液聚合法制备的复合乳液涂饰后革样的透气性、透水气性及耐干湿擦性能都有所提升。  相似文献   

12.
周建华  王琳  李燕  李红 《精细化工》2021,38(11):2368-2376
以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸羟乙酯(HEA)和功能化多面体低聚倍半硅氧烷(POSS)为原料,通过无皂乳液聚合技术合成了POSS/有机硅改性聚丙烯酸酯无氟防水剂,并将其应用于棉织物整理.考察了软硬单体配比对乳液、乳胶膜及其应用性能的影响.利用FTIR和DLS对POSS/有机硅改性聚丙烯酸酯的结构及乳液的粒径进行了表征,利用伺服材料多功能高低温控制试验机、柔软度仪、SEM对整理织物的应用性能及表面形貌进行了表征.结果表明,当m(BA):m(MMA)=6:4时,单体转化率最大,为96.97%,乳液凝胶率为0.14%,乳液的粒径最小,为104.8 nm,乳胶膜对水的接触角最大,可达114.3°,并具有优异的耐水性.整理棉织物表现出优异的力学性能和良好的柔软度,其对水的接触角可达161°.SEM结果表明,棉织物纤维表面存在功能化POSS纳米粒子.无氟防水剂赋予棉织物纤维表面低的表面能和一定的粗糙结构,从而使整理棉织物表现出超疏水性能.无氟防水剂对棉织物的透湿性、透气性、白度几乎没有影响,并赋予了整理棉织物良好的抗菌性.  相似文献   

13.
改性海藻酸纳米胶囊对氯氟氰菊酯的释放性能   总被引:1,自引:0,他引:1  
以DCC/DMAP偶联反应将胆固醇基接枝到天然多糖海藻酸钠上,制备了胆固醇基接枝海藻酸钠衍生物(CSAD),采用乳化法对氯氟氰菊酯进行了负载,得到载药纳米胶囊。通过FTIR、1HNMR、荧光光谱、动态光散射、TEM和释药实验分别对改性海藻酸钠的结构和疏水性能以及载药纳米胶囊的形貌结构和释药性能进行了表征。结果表明,改性海藻酸钠的取代度为5.3%7.9%,其临界聚集质量浓度由1.23 mg/L降为0.267.9%,其临界聚集质量浓度由1.23 mg/L降为0.260.63mg/L,且随着取代度的增大,疏水基的增多,临界聚集质量浓度降至更低。所制备的载药纳米胶囊的d50为(576.4±7.4)nm。Zeta电位值为(-32.3±0.6)mV,在水溶液中能够表现出极好的稳定性能。对比常规AEO n微乳剂,CSAD的氢键作用是CSAD纳米胶囊具备缓释性能的关键因素。  相似文献   

14.
以苯乙烯(St)和含氟单体(G04)为原料、聚乙烯吡咯烷酮(PVP)为分散剂和乙醇/水为混合溶剂,采用分散聚合法制备出PS-F(含氟聚苯乙烯)微球;然后以苯丙乳液提供的附着力、PS-F微球提供的疏水性能,制备PS-F疏水涂层。结果表明:制备PS-F微球的最佳工艺条件是m(总单体)=m(St+含氟单体)=20 g且m(St):m(含氟单体)=18:2、w(AIBN)=1.5%、w(PVP)=7.5%、V(乙醇)=108 mL、V(H_2O)=72mL、反应温度70℃和反应时间10 h,此时PS-F微球的粒径为0.4~1.0μm;当w(PS-F微球)=60%时,疏水涂层的水接触角为130。左右;含氟单体含量和苯丙乳液含量对水接触角的影响不大,涂层疏水性能主要与PS-F微球大小、涂层表面粗糙度有关。  相似文献   

15.
通过自乳化法,分别以3-氨基丙基三乙氧基硅烷与N-甲基二乙醇胺(MDEA)为封闭剂与亲水扩链剂,自制N-(1,1-二甲基-2-乙酰基)乙基]-β-二羟乙氨基丙酰胺(DDP),异佛尔酮二异氰酸酯、聚己内酯二醇、双酚A、ADH为基本原料制备出室温自交联型阳离子聚氨酯纳米水分散液(CBPU)。采用傅里叶变换红外光谱(FT-IR)、动态激光光散射(DLS)、透射电镜(TEM)对CBPU分子结构、乳液粒径与分布及乳胶粒形态进行了研究,研究了封闭率对涂膜表面水接触角及力学性能的影响。结果表明,产物分子结构中出现了叔胺基、Si—O—Si和氨基甲酸酯结构;乳液粒径随封闭率的增加而增加;乳胶粒粒径均一,呈规则的球形结构;增加CBPU封闭率,能提高涂膜的耐水性及力学性能。当CBPU封闭率为15%时,乳液粒径、涂膜水接触角及拉伸强度分别为80.86 nm、83°及23.4 MPa。  相似文献   

16.
在无水乙醇体系中,以甲基三乙氧基硅烷(MTES)为原料、氢氧化钠为催化剂进行水解、缩合反应,制得疏水性聚甲基倍半硅氧烷(PMQS)微粉。用傅里叶红外光谱(FTIR)和扫描电镜(SEM)对产物结构和形貌进行了表征。PMQS微粉在非离子表面活性剂作用下与黏度为9 000 m Pa·s的氨基硅油(ASO)进行乳化,制得外观半透明泛蓝乳液(PMQS/ASO乳液),采用纳米粒度表面电位分析仪测定乳液的粒径。考察了ASO乳液、PMQS/ASO乳液在棉织物上的应用性能,并通过SEM对棉布样表面膜形貌进行研究。结果表明,当m(PMQS)∶m(ASO)=3∶7时,乳液的粒径约150 nm,该乳液处理过的棉织物柔软度、滑爽性和防水性较好,接触角为135°。  相似文献   

17.
以含氟PU(聚氨酯)为壳、低Tg(玻璃化转变温度)的苯丙(SA)共聚物为核,采用乳液聚合法成功制备出FPUA(PU-SA-含氟丙烯酸酯三元共聚物)乳液;然后以此为基体,制备了水性外墙弹性涂料。采用透射电镜(TEM)、动态光散射(DLS)法、红外光谱(FT-IR)法和差示扫描量热(DSC)法等分别测定了FPUA乳液的微观形貌、粒径及其分布、结构、Tg和水接触角。研究结果表明:FPUA乳胶粒呈规则球形状核/壳结构,FPUA乳胶膜的水接触角高达100.1°,由其制成的水性外墙弹性涂料解决了低Tg乳胶膜的"热黏冷脆"等问题。  相似文献   

18.
以氧化石墨烯(GO)为功能填料,氟硅丙烯酸酯(FSiAc)乳液为功能黏合助剂,制备氧化石墨烯/氟硅丙烯酸酯(GO/FSiAc)复合乳液整理剂,并通过轧-烘-焙工艺对亚麻织物进行拒水防紫外线多功能整理。利用FTIR、TEM和DLS表征了GO/FSiAc复合乳液的结构和粒径分布;通过XPS和SEM表征了整理亚麻织物的表面元素和形貌;考察了软单体(BA)和硬单体(MMA)的质量比及GO的质量浓度等对整理亚麻织物的耐热性、拒水性、紫外线防护性能及物理机械性能等应用性能及服用性能的影响。结果表明,GO在FSiAc乳液中良好的分散并均匀地覆盖在亚麻织物表面。当m(BA)∶m(MMA)=7∶3,GO的质量浓度达到4 g/L时,表现出优异的拒水性和防紫外线性能,其水接触角为148.48°,紫外线防护系数(UPF)为179.77,紫外线(UVA)波段的透过率为0.63%。与原始亚麻织物相比,GO/FSiAc复合乳液整理亚麻织物的耐热性、断裂强力和断裂伸长率分别提升了60.67℃、153 N和11.1%,同时保持良好的透气性能。经过20次皂洗测试后,水接触角仍为142.00°,UPF为162.22,UVA波段的透过率为0.94%,说明整理后亚麻织物具有良好的耐久性。  相似文献   

19.
通过无皂乳液聚合技术合成了POSS/有机硅改性聚丙烯酸酯无氟防水剂,并将其应用于棉织物整理。考察了软硬单体配比对乳液、乳胶膜及其应用性能的影响。利用傅里叶红外光谱(FT-IR)和傅里叶红外光谱(DLS)对聚丙烯酸酯的结构及乳胶粒的粒径大小进行了表征,利用伺服材料多功能高低温控制试验机、柔软度仪、SEM对整理织物的应用性能及表面形貌进行了表征。结果表明:当m(BA):m(MMA)为6:4时,单体的转化率最大为96.97%,乳液的凝胶率为0.14%,乳胶粒的粒径最小为104.8 nm,乳胶膜对水的接触角最大可达114.3?,并具有优异的耐水性。整理棉织物表现出优异的力学性能和良好的柔软度,其对水的接触角可达161?。SEM结果表明棉织物纤维表面存在功能化POSS纳米颗粒。无氟防水剂赋予棉织物纤维表面低的的表面能和一定的粗糙结构,从而使整理棉织物表现出超疏水性能。  相似文献   

20.
采用含氢硅油(PHMS)、烯丙基聚醚(FB1000)与不同质量的丙烯酸十八酯(SA)反应制备了具有侧链结构的高分子表面活性剂(PSA)。利用FTIR、~1HNMR、GPC、表面张力仪、动态激光光散射仪(DLS)、荧光光谱仪(FLD)对产物的结构与溶液性质进行了测定。结果表明,随着SA用量的增加,聚合物越易聚集缔合形成胶束,粒径从71.40 nm增加到141.07 nm,粒度分散系数(PDI)增大至0.396,随着疏水基团的增加,溶液表面张力降低至24.20 m N/m,临界胶束质量浓度(CMC)降至0.49 g/L。荧光光谱表明,聚合物溶液浓度增大到一定值时,溶液中会形成疏水微区,第一、第三发射峰的比值(_I1/I_3)不断减小,达到临界缔合浓度(CAC)后,芘分子会增溶到胶束中I_1/I_3趋于稳定。破乳实验结果表明,聚合物PSA的破乳脱水率达93%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号