首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of vinyl acetat (VA) on the morphological, thermal stability, and mechanical properties of heterophasic polypropylene–(ethylene‐propylene) copolymer (PP–EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites was studied. Tailored organoclay C20A was selected to enhance the exfoliation of the clay platelets. Depending on the VA content, there were two morphological organoclay populations in the systems. Both populations were directly observed by scanning transmission electron microscopy and measured by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The content of VA in EVA originated spherical and elongated morphologies in the resultant nanocomposites. High‐VA content led to a better intercalation of the organoclay platelets. Measurement of thermal properties suggested that higher VA decreases thermal stability in samples both with and without organoclay, although nanocomposites had higher thermal stability than samples without clay. The storage modulus increased both with nanoclay and VA content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Ethylene vinyl acetate copolymer (EVA) and monmorillonite (MMT) nanocomposites have been investigated as a function of vinyl acetate content and molecular weight of EVA and types of substituted alkyl ammonium of MMT. It is found that vinyl acetate content and type of substituted alkyl ammonium are important factors for the intercalation behaviour of MMT in MMT/EVA nanocomposite. Maleic anhydride grafted high‐density polyethylene was used as a compatibilizer to improve the intercalation behaviour of MMT. X‐ray diffraction and transmission electron microscopy were used to characterize the intercalation/exfoliation behaviour, and mechanical properties were measured. © 2003 Society of Chemical Industry  相似文献   

3.
Polymer nanocomposites based on a layered clay used as nanofiller and copolymers ethylene and vinyl acetate matrix (EVA, the content of vinyl acetate (VA) component 19 wt% and 5 wt%) and ethylene octene copolymer (EOC, 17% and 45% of octene) were prepared. KO Buss kneader and double screw extruder were used. The MMT Na+ and four types of commercial products such as Nanofil N5 and N3000, Cloisite 93A and 30B were used as nanofillers—5 wt% in relation to the content of montmorillonite. The aim was to evaluate the influence of copolymer composition and processing on prepared nanocomposite properties. The morphology of samples was examined by means of X‐ray diffraction (XRD) and transmission electronic microscopy TEM. Furthermore, mechanical and especially barrier properties were observed. Despite the fact that the XRD and microscopy results have revealed that complete exfoliation did not take place in any case, mechanical properties as well as the permeability showed that used 5 wt% of clay was enough to achieve the improvement of properties. Cloisite 30B might be the most suitable for the polyethylene/EVA matrix. In case of EOC copolymer the nanofiller Nanofil N3000 and mainly Cloisite 93A seems to be more suitable. The better properties were achieved for the version of EVA with lower VA content and also for EOC 17, but not for each evaluated property. POLYM. ENG. SCI., 59:2514–2521, 2019. © 2019 Society of Plastics Engineers  相似文献   

4.
Preparation of nanocomposites based on ethylene-vinyl acetate copolymer (EVA) and organoclay by melt intercalation is described in this paper. Effects of VA content, melt flow index (MFI) and maleation of EVA on melt intercalation were investigated by X-ray diffraction. The level of intercalation into the organoclay increases greatly as VA content increases from 6 to 12 wt%, but shows minimal change from 12 to 28 wt%. For 28 wt% VA content polymers with MFI from 3 to 150, interlayer expansion exhibited a maximum at MFI = 6. Exfoliated nanocomposites were not obtained for a range of unfunctionalized EVA's of different VA content and MFI. Use of maleated EVA (MEVA) had an obvious improvement on exfoliation of the silicate layers probably due to chemical interaction between the MEVA matrix and silicate layers. FTIR results showed that the MA functionality reacts during processing. Lower clay content favored formation of an exfoliated nanocomposite structure. Exfoliated nanocomposites from MEVA exhibited higher Young's modulus and tensile strength than either pure EVA or intercalated nanocomposites from non-maleated EVA. Polym. Compos. 25:535–542, 2004. © 2004 Society of Plastics Engineers.  相似文献   

5.
This paper is an account of the experiments on grafting polyvinyl acetate onto organophilic montmorillonite. Cloisite 20A was reacted with vinyltrichlorosilane to replace the edge hydroxyl groups of the clay with a vinyl moiety. Because the reaction liberates HCl, it was performed in the presence of sodium hydrogencarbonate to prevent the exchange of quaternary alkylammonium cations with H+ ions. Only the silanol groups on the edge of the clay react with vinyltrichlorosilane. After the reaction, the product maintained the same basal spacing as the precursor. The radical polymerization of the product with vinyl acetate as a vinyl monomer leads to chemical grafting of polyvinyl acetate onto montmorillonite surface. The homopolymer formed during polymerization was separated from the grafted organoclay by Soxhelt extraction. Chemical grafting of the polymer onto Cloisite 20A was confirmed by infrared spectroscopy. The prepared nanocomposite materials and the grafted nano‐particles were studied by XRD, SEM, and TEM. Exfoliated nanocomposite was obtained for 0.5% clay content. Nanocomposites with 1% and 3% clay contents showed significant intercalation and agglomeration occurred at higher clay loadings. The nanocomposites were studied by thermogravimertic analysis (TGA) and dynamic mechanical analysis (DMTA). Improved thermo‐mechanical properties were observed for nanocomposite with 0.5% clay content. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

6.
The objective of this work is to understand the effect of shear force on the properties of epoxy–clay nanocomposites. The shear force was controlled by changing the revolutions per minute on a mechanical mixer. Differences in the aspect ratio of clay layers and differences of clay particle distribution in the epoxy matrix were caused by shear force. Shear force mechanism on epoxy–clay nanocomposites' intercalation/exfoliation were compared with the other mechanism already suggested. X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy were utilized to investigate the degree of exfoliation and morphology. The mechanical and thermal properties were also studied to demonstrate the effect of shear force. This study revealed that appropriate shear force and mixing time on nanocomposite preparation was required to achieve the desired properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3465–3473, 2006  相似文献   

7.
Film grade ethylene vinyl acetate (EVA), low density polyethylene (LDPE), and high density polyethylene (HDPE) were melt compounded with an organically modified montmorillonite, then blown into films. The morphology studies showed that all three types of film involve intercalated clay particles. The dependence of intercalation extent on the matrix as well as on the molecular weight of compatibilizers is discussed. The tensile testing data showed that the clay enhancing effects apply mainly to the modulus, instead of to the strength. The EVA‐based nanocomposite films exhibit the most significantly improved modulus while the HDPE‐based films have the least. Lower molecular weight compatibilizers could promote the clay enhancing effects while higher molecular weight compatibilizers could increase the matrix properties. Steady shear viscosities of an intercalated and an exfoliated system were also investigated. Comparing our data with that from the literature lead us to conclude that: 1) the zero‐shear viscosity of a nanocomposite is mainly determined by clay loading instead of by clay intercalation/exfoliation structures and the matrix viscosity; and 2) the clay orientation during a shear flow is highly dependent on the matrix flow behavior and to a lesser extent on the clay structural state. POLYM. ENG. SCI., 45:469–477, 2005. © 2005 Society of Plastics Engineers  相似文献   

8.
A series of ethylene vinyl acetate (EVA) nanocomposites using four kinds of EVA with 40, 50, 60, and 70 wt% vinyl acetate (VA) contents and three different carbon-based nanofillers—expanded graphite (EG), multi-walled carbon nanotube (MWCNT), and carbon nanofiber (CNF) have been prepared via solution blending. The influence of the matrix polarity and the nature of nanofillers on the morphology and properties of EVA nanocomposites have been investigated. It is observed that the sample with lowest vinyl acetate content exhibits highest mechanical properties. However, the enhancement in mechanical properties with the incorporation of various nanofillers is the highest for EVA with high VA content. This trend has been followed in both dynamic mechanical properties and thermal conductivity of the nanocomposites. EVA copolymer undergoes a transition from partial to complete amorphousness between 40 and 50 wt% VA content, and this changes the dispersion of the nanofillers. The high VA-containing polymers show more affinity toward fillers due to the large free volume available and allow easy dispersion of nanofillers in the amorphous rubbery phase, as confirmed from the morphological studies. The thermal stability of the nanocomposites is also influenced by the type of nanofiller.  相似文献   

9.
Nanocomposites of ethylene‐vinyl acetate copolymer (EVAL) with Dellite organoclay were prepared in a laboratory extruder. The extent of intercalation of the nanocomposites was studied by field emission scanning electron microscopy and X‐ray diffraction. It was established that the organoclay is well dispersed and preferentially embedded in the EVAL phase. Further, the intercalation degree of the organoclay decreased with increasing organoclay content. The mechanical properties of the nanocomposites were studied as a function of clay loading and EVAL type. The nanocomposites exhibited enhanced thermal stability as seen in thermogravimetric studies. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

10.
Tapioca starch (TS), poly(lactic acid) (PLA), and Cloisite 30B nanocomposite foams, with four clay contents of 1, 3, 5, 7 wt%, were prepared by a melt‐intercalation method. Selected structural, thermal, physical, and mechanical properties were characterized using X‐ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetry analyses, and an Instron universal testing machine, respectively. XRD results indicated that intercalation of TS/PLA into the nanoclay layers occurred in all four nanocomposite foams. At the same time, tactoid structures were observed in all nanocomposite foams but to a lesser extend with 1 and 3 wt% clay contents. Effect of clay content on melting temperature (Tm), onset degradation temperature, radial expansion ratio, unit density, bulk compressibility and bulk spring index of the nanocomposites were investigated. Among the four nanocomposites, 3 wt% clay content produced significantly different (p < 0.05) properties. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

11.
In order to examine the adhesive behavior of a polar polymer between hydrophilic clay layers, the so‐called glue effect, a clay intercalation by an ethylene–vinyl alcohol (EVOH) copolymer, which was capable of strong hydrogen bonding with the silicate surface of clay, was prepared by the melt intercalation technique and compared with a clay nanocomposite containing styrene–acrylonitrile (SAN) copolymer of less polar interaction energy in terms of the morphology and mechanical properties. Although initial penetration of the guest polymer into the gallery of the host clay occurred more rapidly for EVOH because of its strong hydrophilic nature, the dissociation of clay nanoplatelets was better developed for SAN with less polar interaction with clay, well evidencing the fact that the glue effect effectively affects the intercalation behavior of polymer/clay nanocomposites. However, the mechanical properties of the EVOH/clay nanocomposite were superior to those of SAN/clay nanocomposites. Although dissociation of respective silicate layers was poor for EVOH/clay nanocomposites, strong attractive energy stabilizes the interface between inorganic nanoparticles and the polymer matrix much more effectively, resulting in higher mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2749–2753, 2006  相似文献   

12.
Unsaturated polyester (UPE) resin including styrene monomer was mixed with organophilic montmorillonite (MMT) clay and its crosslinking polymerization reaction was done in the presence of free‐radical initiator. MMT clay was modified with cetyl trimethly ammonium bromide and trimethoxy vinyl silane. The nanocomposites were characterized by X‐ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric and dynamic mechanical analyses (TGA and DMA). The exfoliated nanocomposite structure was obtained when the MMT clay was modified in the presence of both modifiers, whereas individual modifications all resulted in intercalated structures. The exfoliated UPE nanocomposite exhibited better thermal and dynamic mechanical properties when compared with pure UPE and other composites, even with 3 wt% clay loading. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Ethylene–vinyl acetate (EVA) copolymers/clay nanocomposites, prepared by using nonreactive organophilic clay and reactive organophilic clay, were characterized by X‐ray diffraction and by high‐resolution transmission electron microscopy. The influence of gamma irradiation on the structure and properties of the pure EVA and EVA/clay nanocomposites was systematically investigated. In the presence of gamma radiation, the clay can effectively restrain the increase of the storage modulus of EVA/clay nanocomposites, which was supported by dynamical mechanical analysis. Gamma irradiation had almost no effect on the thermal properties of EVA/clay nanocomposites by using nonreactive organophilic clay, but it obviously improved the thermal stability of EVA/clay nanocomposites by using reactive organophilic clay. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2532–2538, 2005  相似文献   

14.
The reaction behavior and physical properties of polyurethane (PU)/clay nanocomposite systems were investigated. Organically modified clay was used as nanofillers to formulate the nanocomposites. Differential scanning calorimetry was used to study the reaction behavior of the PU/clay nanocomposite systems. The reaction rate of the nanocomposite systems increased with increasing clay content. The reaction kinetic parameters of proposed kinetic equations were determined by numerical methods. The glass transition temperatures of the PU/clay nanocomposite systems increased with increasing clay content. The thermal decomposition behavior of the PU/clay nanocomposites was measured by using thermogravimetric analysis. X‐ray diffractometer and transmission electronic microscope data showed the intercalation of PU resin between the silicate layers of the clay in the PU/clay nanocomposites. A universal testing machine was used to investigate the tensile properties of the PU/clay nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1641–1647, 2005  相似文献   

15.
The structure and mechanical properties of clay modified with ethylene vinyl acetate copolymer in the presence of ethylene glycidyl methacrylate (EGMA) were investigated as a function of compatibilizer and clay contents. The structure and properties were determined by X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis (TGA). The presence of EGMA caused strong exfoliation of the clay in the polymer matrix, although at higher clay contents, some clay layers still existed. The more effective exfoliation, however, did not seem to substantially influence the tensile properties of the nanocomposites because the EGMA itself had a much stronger influence, which overshadowed any possible influence that the EGMA–clay interaction may have had on these properties. The thermal stability of the nanocomposites (as studied by TGA) improved in the presence of EGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4095–4101, 2007  相似文献   

16.
Rubber‐toughened polystyrene has been extensively studied and is a well‐established technology. However, the use of thermoplastic elastomers to toughen polystyrene (PS) is new and has the potential for further investigations. In the present study, three EVAs (ethylene–vinyl acetate copolymers) with identical melt flow indices (MFIs), of ~2.5 dgmin?1, but different vinyl acetate (VA) contents, of 9.3 wt% (EVA760), 18.0 wt% (EVA460) and 28.0 wt% (EVA265), were melt blended with PS at 180 °C, and various ASTM test pieces were injection moulded at 200 °C. The polarity of the dispersed phase (ie EVA), has a significant effect on the mechanical properties of the blends. Both mechanical and rheological studies reveal that the uncompatibilised PS/EVA265 blends exhibit some degree of compatibility when the amount of EVA265 is lower than 30 wt%. These results indicate that EVA265 with the highest VA content is the most effective impact modifier for PS. The results clearly show that increasing the VA content in EVA increases the polarity of the dispersed phase, approaching that of the matrix (ie PS) and subsequently improving the compatibility between the two phases in terms of interfacial adhesion. © 2002 Society of Chemical Industry  相似文献   

17.
Mg–Al layered double hydroxide (LDH)/Ethylene vinyl acetate (EVA‐28) nanocomposites were prepared through solution intercalation method using organically modified layered double hydroxide (DS‐LDH). DS‐LDH was made by the intercalation of sodium dodecyl sulfate (SDS) ion. The structure of DS‐LDH and its nanocomposites with EVA‐28 was determined by X‐ray diffraction (XRD) and transmission electron microscope (TEM) analysis. XRD analysis shows that the original peak of DS‐LDH shifted to lower 2θ range and supports the formation of intercalated nanocomposites while, TEM micrograph shows the presence of partially exfoliated LDH nanolayers in addition to orderly stacked LDH crystallites in the polymer matrix. The presence of LDH in the nanocomposites has been confirmed by Fourier transform infrared (FTIR) analysis. The mechanical properties show significant improvement for the nanocomposite with respect to neat EVA‐28. Thermogravimetric (TGA) analysis shows that thermal stability of the nanocomposites is higher than that of EVA‐28. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1845–1851, 2007  相似文献   

18.
主要论述了高密度聚乙烯(PE-HD)/黏土纳米复合材料的制备因素对结构形态的影响及其性能的研究进展。当前的研究表明,黏土有机化处理和使用相容剂能改善材料的插层和剥离结构;PE-HD基体对结构的影响比较复杂,一方面,随着聚合物相对分子质量的增加,聚合物分子链的尺寸增加,分子链长的聚合物更难进入到黏土夹层间,不利于黏土的剥离;另一方面,黏度随相对分子质量的增加而增加,黏度的增加在熔融加工过程中可提高熔体的剪切力,有利于聚合物进入堆叠的纳米黏土层间,使得片层分离而达到剥离结构;黏土加入量过高不利于得到剥离结构;在加工工艺上,母料法比直接混合法得到的插层效果好,选择合适的设备、对螺杆进行优化设计以提高剪切效果,有利于得到插层和剥离结构的PE-HD/黏土纳米复合材料。PE-HD/黏土纳米复合材料的性能研究表明,由于黏土没达到完全剥离和均匀分散,纳米复合材料的脆性增加,韧性降低,且随黏土含量的增加脆性增加,这与PE-HD和黏土界面相间的相互作用密切相关;黏土粒子分散程度越高,其与熔体接触面积越大,PE-HD分子链运动受阻,材料弹性提高;纳米复合材料中黏土层作为二维异向成核剂,可以提高材料的结晶速率,使结晶温度升高,黏土含量过大会降低结晶度;黏土分散不均会造成复合材料的气体渗透性降低;一方面,片层的阻透效应可提高材料热稳定性,另一方面,有机改性黏土的催化作用又会使PE降解而降低其热稳定性,当黏土含量适中时,黏土片层均匀分散,阻透性能起主要作用,但随着黏土含量的增加,催化作用迅速加强并成为主要因素,使复合材料热稳定性降低;此外,燃烧过程中形成焦烧物可提高PE-HD/黏土纳米复合材料的阻燃性。  相似文献   

19.
Montmorillonite (MMT)‐based polyimide (PI) nanocomposites were prepared via two‐stage polymerization of PI using polyamic acid (PAA). The clay was organically modified using various alkylammonium ions to examine the effect of changes in alkyl length on the intercalation spacing of both the treated clays and their hybrids with PAA and PI. The intercalation behavior of clay in the PI matrix and its thermal and mechanical properties were investigated as a function of clay concentration. The d‐spacing of organically modified MMT (O‐MMT) increased with increasing length of the alkylammonium chain. PI/O‐MMT hybrids form exfoliated nanocomposites at clay concentrations below 2 wt%, while they form intercalated nanocomposites together with some exfoliated ones at clay contents exceeding 4 wt%. Young's modulus increased rapidly to a clay loading of 2 wt%, and leveled off with further increases in clay loading. The tensile strength at break increased rapidly up to a clay loading of 1 wt%, and then decreased sharply, while the strain at break showed a monotonic decrease with increasing clay loading from 0 to 8 wt%. The storage modulus, E′, in the temperature range below the glass transition temperature Tg, generally increased with increasing clay content, except at the highest clay content of 8 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Organo‐clay polymer nanocomposites offer improved material properties at very low filler loadings making them of immediate interest for application in body panels, claddings, and instrument panels. This improvement in properties requires that the organo‐clay be well dispersed if not completely exfoliated. Conventionally, the dispersion and exfoliation of the organo‐clay is evaluated using transmission electron microscopy (TEM) and X‐ray diffraction (XRD). Although both TEM and XRD data were found to correlate with flexural modulus of thermoplastic olefin nanocomposite materials, only TEM proved successful in quantifying the dispersion of the organo‐clay in all nanocomposite materials (exfoliated, tactoid, or agglomerated tactoid). XRD was found to be capable of detecting exfoliation and intercalation but is limited because of clay dilution, preferred orientation, mixed‐layering, and other peak broadening factors. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1110–1117, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号