首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model which allows the introduction of displacements jumps to conventional finite elements is developed. The path of the discontinuity is completely independent of the mesh structure. Unlike so‐called ‘embedded discontinuity’ models, which are based on incompatible strain modes, there is no restriction on the type of underlying solid finite element that can be used and displacement jumps are continuous across element boundaries. Using finite element shape functions as partitions of unity, the displacement jump across a crack is represented by extra degrees of freedom at existing nodes. To model fracture in quasi‐brittle heterogeneous materials, a cohesive crack model is used. Numerical simulations illustrate the ability of the method to objectively simulate fracture with unstructured meshes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Cracks with quasibrittle behavior are extremely common in engineering structures. The modeling of cohesive cracks involves strong nonlinearity in the contact, material, and complex transition between contact and cohesive forces. In this article, we propose a novel contact algorithm for cohesive cracks in the framework of the extended finite element method. A cohesive-contact constitutive model is introduced to characterize the complex mechanical behavior of the fracture process zone. To avoid the stress oscillations and ill-conditioned system matrix that often occur in the conventional contact approach, the proposed algorithm employs a special dual Lagrange multiplier to impose the contact constraint. This Lagrange multiplier is constructed by means of the area-weighted average and biorthogonality conditions at the element level. The system matrix can be condensed into a positive definite matrix with an unchanged size at a very low computational cost. In addition, we illustrate solving the cohesive crack contact problem using a novel iteration strategy. Several numerical experiments are performed to illustrate the efficiency and high-quality results of our method in contact analysis of cohesive cracks.  相似文献   

3.
4.
We introduce the notion of time continuity for the analysis of cohesive zone interface finite element models. We focus on ‘initially rigid’ models in which an interface is inactive until the traction across it reaches a critical level. We argue that methods in this class are time discontinuous, unless special provision is made for the opposite. Time discontinuity leads to pitfalls in numerical implementations: oscillatory behavior, non‐convergence in time and dependence on nonphysical regularization parameters. These problems arise at least partly from the attempt to extend uniaxial traction–displacement relationships to multiaxial loading. We also argue that any formulation of a time‐continuous functional traction–displacement cohesive model entails encoding the value of the traction components at incipient softening into the model. We exhibit an example of such a model. Most of our numerical experiments concern explicit dynamics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
An energy minimization formulation of initially rigid cohesive fracture is introduced within a discontinuous Galerkin finite element setting with Nitsche flux. The finite element discretization is directly applied to an energy functional, whose term representing the energy stored in the interfaces is nondifferentiable at the origin. Unlike finite element implementations of extrinsic cohesive models that do not operate directly on the energy potential, activation of interfaces happens automatically when a certain level of stress encoded in the interface potential is reached. Thus, numerical issues associated with an external activation criterion observed in the previous literature are effectively avoided. Use of the Nitsche flux avoids the introduction of Lagrange multipliers as additional unknowns. Implicit time stepping is performed using the Newmark scheme, for which a dynamic potential is developed to properly incorporate momentum. A continuation strategy is employed for the treatment of nondifferentiability and the resulting sequence of smooth nonconvex problems is solved using the trust region minimization algorithm. Robustness of the proposed method and its capabilities in modeling quasistatic and dynamic problems are shown through several numerical examples.  相似文献   

6.
In recent years, cohesive zone models have been employed to simulate fracture and delamination in solids. This paper presents in detail the formulation for incorporating cohesive zone models within the framework of a large deformation finite element procedure. A special Ritz-finite element technique is employed to control nodal instabilities that may arise when the cohesive elements experience material softening and lose their stress carrying capacity. A few simple problems are presented to validate the implementation of the cohesive element formulation and to demonstrate the robustness of the Ritz solution method. Finally, quasi-static crack growth along the interface in an adhesively bonded system is simulated employing the cohesive zone model. The crack growth resistance curves obtained from the simulations show trends similar to those observed in experimental studies  相似文献   

7.
8.
Extended finite element method for cohesive crack growth   总被引:14,自引:0,他引:14  
The extended finite element method allows one to model displacement discontinuities which do not conform to interelement surfaces. This method is applied to modeling growth of arbitrary cohesive cracks. The growth of the cohesive zone is governed by requiring the stress intensity factors at the tip of the cohesive zone to vanish. This energetic approach avoids the evaluation of stresses at the mathematical tip of the crack. The effectiveness of the proposed approach is demonstrated by simulations of cohesive crack growth in concrete.  相似文献   

9.
The performance of partition‐of‐unity based methods such as the generalized finite element method or the extended finite element method is studied for the simulation of cohesive cracking. The focus of investigation is on the performance of bilinear quadrilateral finite elements using these methods. In particular, the approximation of the displacement jump field, representing cohesive cracks, by extended finite element method/generalized finite element method and its effect on the overall behavior at element and structural level is investigated. A single element test is performed with two different integration schemes, namely the Newton‐Cotes/Lobatto and the Gauss integration schemes, for the cracked interface contribution. It was found that cohesive crack segments subjected to a nonuniform opening in unstructured meshes (or an inclined crack in a structured finite element mesh) result in an unrealistic crack opening. The reasons for such behavior and its effect on the response at element level are discussed. Furthermore, a mesh refinement study is performed to analyze the overall response of a cohesively cracked body in a finite element analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
We have developed a new crack tip element for the phantom‐node method. In this method, a crack tip can be placed inside an element. Therefore, cracks can propagate almost independent of the finite element mesh. We developed two different formulations for the three‐node triangular element and four‐node quadrilateral element, respectively. Although this method is well suited for the one‐point quadrature scheme, it can be used with other general quadrature schemes. We provide some numerical examples for some static and dynamic problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack‐tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub‐triangle of the cracked element. With the extra enrichments, the crack‐tip element becomes capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3‐node constant strain triangle (CST) and a standard algorithm was used to solve the non‐linear equations. The performance of the element is illustrated by modelling fracture mechanical benchmark tests. Investigations were carried out on the performance of the element for different crack lengths within one element. The results are compared with previously obtained XFEM results applying fully cracked XFEM elements, with computational results achieved using standard cohesive interface elements in a commercial code, and with experimental results. The suggested element performed well in the tests. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A recent approach to fracture modeling has combined the extended finite element method (XFEM) with cohesive zone models. Most studies have used simplified enrichment functions to represent the strong discontinuity but have lacked an analytical basis to represent the displacement gradients in the vicinity of the cohesive crack. In this study enrichment functions based upon an existing analytical investigation of the cohesive crack problem are proposed. These functions have the potential of representing displacement gradients in the vicinity of the cohesive crack and allow the crack to incrementally advance across each element. Key aspects of the corresponding numerical formulation and enrichment functions are discussed. A parameter study for a simple mode I model problem is presented to evaluate if quasi‐static crack propagation can be accurately followed with the proposed formulation. The effects of mesh refinement and mesh orientation are considered. Propagation of the cohesive zone tip and crack tip, time variation of the cohesive zone length, and crack profiles are examined. The analysis results indicate that the analytically based enrichment functions can accurately track the cohesive crack propagation of a mode I crack independent of mesh orientation. A mixed mode example further demonstrates the potential of the formulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A new continuous‐discontinuous strategy for the simulation of failure is presented. The continuous bulk is regularised by means of a gradient‐enhanced damage model, where non‐locality is introduced at the level of displacements. As soon as the damage parameter is close or equal to 1, a traction‐free crack is introduced. To determine the direction of crack growth, a new criterion is proposed. In contrast to traditional techniques, where mechanical criteria are used to define the crack path, here, a geometrical approach is used. More specifically, given a regularised damage field D( x ), we propose to propagate the discontinuity following the direction dictated by the medial axis of the isoline (or isosurface in 3D) D( x ) = D*. The proposed approach is tested on different two‐dimensional and three‐dimensional examples that illustrate that this combined methodology is able to deal with damage growth and material separation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Extensions of a new technique for the finite element modelling of cracks with multiple branches, multiple holes and cracks emanating from holes are presented. This extended finite element method (X‐FEM) allows the representation of crack discontinuities and voids independently of the mesh. A standard displacement‐based approximation is enriched by incorporating discontinuous fields through a partition of unity method. A methodology that constructs the enriched approximation based on the interaction of the discontinuous geometric features with the mesh is developed. Computation of the stress intensity factors (SIF) in different examples involving branched and intersecting cracks as well as cracks emanating from holes are presented to demonstrate the accuracy and the robustness of the proposed technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The cohesive finite element method (CFEM) allows explicit modelling of fracture processes. One form of CFEM models integrates cohesive surfaces along all finite element boundaries, facilitating the explicit resolution of arbitrary fracture paths and fracture patterns. This framework also permits explicit account of arbitrary microstructures with multiple length scales, allowing the effects of material heterogeneity, phase morphology, phase size and phase distribution to be quantified. However, use of this form of CFEM with cohesive traction–separation laws with finite initial stiffness imposes two competing requirements on the finite element size. On one hand, an upper bound is needed to ensure that fields within crack‐tip cohesive zones are accurately described. On the other hand, a lower bound is also required to ensure that the discrete model closely approximates the physical problem at hand. Both issues are analysed in this paper within the context of fracture in multi‐phase composite microstructures and a variable stiffness bilinear cohesive model. The resulting criterion for solution convergence is given for meshes with uniform, cross‐triangle elements. A series of calculations is carried out to illustrate the issues discussed and to verify the criterion given. These simulations concern dynamic crack growth in an Al2O3 ceramic and in an Al2O3/TiB2 ceramic composite whose phases are modelled as being hyperelastic in constitutive behaviour. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
为精确而有效地求解机电耦合作用下含裂纹压电材料的断裂参数,首先,通过将复势函数法、扩展有限元法和光滑梯度技术引入到含裂纹压电材料的断裂机理问题中,提出了含裂纹压电材料的Cell-Based光滑扩展有限元法;然后,对含中心裂纹的压电材料强度因子进行了模拟,并将模拟结果与扩展有限元法和有限元法的计算结果进行了对比。数值算例结果表明:Cell-Based光滑扩展有限元法兼具扩展有限元法和光滑有限元法的特点,不仅单元网格与裂纹面相互独立,且裂尖处单元不需精密划分,与此同时,Cell-Based光滑扩展有限元法还具有形函数简单且不需求导、对网格质量要求低且求解精度高等优点。所得结论表明Cell-Based光滑扩展有限元法是压电材料断裂分析的有效数值方法。   相似文献   

17.
An extended finite element method scheme for a static cohesive crack is developed with a new formulation for elements containing crack tips. This method can treat arbitrary cracks independent of the mesh and crack growth without remeshing. All cracked elements are enriched by the sign function so that no blending of the local partition of unity is required. This method is able to treat the entire crack with only one type of enrichment function, including the elements containing the crack tip. This scheme is applied to linear 3‐node triangular elements and quadratic 6‐node triangular elements. To ensure smooth crack closing of the cohesive crack, the stress projection normal to the crack tip is imposed to be equal to the material strength. The equilibrium equation and the traction condition are solved by the Newton–Raphson method to obtain the nodal displacements and the external load simultaneously. The results obtained by the new extended finite element method are compared to reference solutions and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Level set methods have recently gained much popularity to capture discontinuities, including their possible propagation. Typically, the partial differential equations that arise in level set methods, in particular the Hamilton–Jacobi equation, are solved by finite difference methods. However, finite difference methods are less suited for irregular domains. Moreover, it seems slightly awkward to use finite differences for the capturing of a discontinuity, while in a subsequent stress analysis finite elements are normally used. For this reason, we here present a finite element approach to solving the governing equations of level set methods. After a review of the governing equations, the initialization of the level sets, the discretization on a finite domain, and the stabilization of the resulting finite element method will be discussed. Special attention will be given to the proper treatment of the internal boundary condition, which is achieved by exploiting the partition‐of‐unity property of finite element shape functions. Finally, a quantitative analysis including accuracy analysis is given for a one‐dimensional example and a qualitative example is given for a two‐dimensional case with a curved discontinuity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, the response of an ammonium perchlorate (AP)-hydroxyl-terminated polybutadiene (HTPB) composite material under impact loading is presented, utilizing computational cohesive finite element method (CFEM) simulations that are validated with drop hammer experiments. This study examined the impact behaviour of AP crystal sizes between 200 and 400 μm by varying impact velocities between 3 and 10 m/s. Based on the outcome of CFEM simulations, analysis of variance (ANOVA) tests and a response surface method (RSM) were utilized to construct a mathematical model approximating the relationships between simulation inputs and outcomes. Both computational and experimental results show that the local strain rate has a considerable positive correlation with crystal size, and the rate of temperature change has positive correlations with both crystal size and impact velocity. Further, it was observed that stiffness and compression energy are the primary factors to variances in local strain rate and rate of change of temperature. RSM has been found to be an effective tool for modelling impact responses of materials under varying experimental conditions.  相似文献   

20.
In this paper we present a new approach to simulations on complex‐shaped domains. The method is based on a discontinuous Galerkin (DG) method, using trial and test functions defined on a structured grid. Essential boundary conditions are imposed weakly via the DG formulation. This method offers a discretization where the number of unknowns is independent of the complexity of the domain. We will show numerical computations for an elliptic scalar model problem in ?2 and ?3. Convergence rates for different polynomial degrees are studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号