首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A meshless procedure, based on boundary integral equations, is proposed to analyze elastoplastic problems. To cope with non‐linear problems, the usual boundary element method introduces domain discretization cells, often considered a ‘drawback’ of the method. Here, to get rid of the standard element and cell, i.e. boundary and domain discretization, the orthogonal moving least squares (also known as improved moving least squares) method is used. The algorithm adopted to solve these particular inelastic non‐linear problems is a well‐established, criterion‐independent implicit procedure, previously developed by the authors. Comparative results are presented at the end to illustrate the effectiveness of the proposed techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, based on the general stress–strain relationship, displacement and stress boundary‐domain integral equations are established for single medium with varying material properties. From the established integral equations, single interface integral equations are derived for solving general multi‐medium mechanics problems by making use of the variation feature of the material properties. The displacement and stress interface integral equations derived in this paper can be applied to solve non‐homogeneous, anisotropic, and non‐linear multi‐medium problems in a unified way. By imposing some assumptions on the derived integral equations, detailed expressions for some specific mechanics problems are deduced, and a few numerical examples are given to demonstrate the correctness and robustness of the derived displacement and stress interface integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
 This paper presents a rate-independent elastoplastic constitutive model for (nearly) incompressible biological fiber-reinforced composite materials. The constitutive framework, based on multisurface plasticity, is suitable for describing the mechanical behavior of biological fiber-reinforced composites in finite elastic and plastic strain domains. A key point of the constitutive model is the use of slip systems, which determine the strongly anisotropic elastic and plastic behavior of biological fiber-reinforced composites. The multiplicative decomposition of the deformation gradient into elastic and plastic parts allows the introduction of an anisotropic Helmholtz free-energy function for determining the anisotropic response. We use the unconditionally stable backward-Euler method to integrate the flow rule and employ the commonly used elastic predictor/plastic corrector concept to update the plastic variables. This choice is expressed as an Eulerian vector update the Newton's type, which leads to a numerically stable and efficient material model. By means of a representative numerical simulations the performance of the proposed constitutive framework is investigated in detail. Received: 12 December 2001 / Accepted: 14 June 2002 Financial support for this research was provided by the Austrian Science Foundation under START-Award Y74-TEC. This support is gratefully acknowledged.  相似文献   

4.
Abstract

A novel integral equation method is developed in this paper for the analysis of two‐dimensional general anisotropic elastic bodies with cracks. In contrast to the conventional boundary integral methods based on reciprocal work theorem, the present method is derived from Stroh's formalism for anisotropic elasticity in conjunction with Cauchy's integral formula. The proposed boundary integral equations contain boundary displacement gradients and tractions on the non‐crack boundary and the dislocations on the crack lines. In cases where only the crack faces are subjected to tractions, the integrals on the non‐crack boundary are non‐singular. The boundary integral equations can be solved using Gaussian‐type integration formulas directly without dividing the boundary into discrete elements. Numerical examples of stress intensity factors are given to illustrate the effectiveness and accuracy of the present method.  相似文献   

5.
 A boundary-domain integral equation for a coated half-space (elastically isotropic homogeneous substratum, possibly anisotropic coating layer) is developed. The half-space fundamental solution is used, so that the discretization is limited to the potential contact zone (boundary elements), the potentially plastic part of the substratum and the coating layer (domain integration cells). Steady-state elastoplastic analysis is implemented within this framework, for plane-strain conditions, for solving rolling and/or sliding contact problems, where at the moment the contact load comes from either a purely elastic contact analysis or is of Hertz type. The constitutive integration is of implicit type. In order to improve accuracy and computational efficiency, infinite elements are used. Comparison of numerical results with other sources, when available, is satisfactory. The present formulation is also used to compute the contact pressure for an isotropic (or anisotropic) coating on an isotropic homogeneous half-space indented by an elastic punch. Received 29 May 2001  相似文献   

6.
An application of the boundary element method (BEM) to plate bending elastoplastic analysis is presented. Reissner's plate bending theory, which caters to thin and thick plates, is considered.

First, the governing equations are shown, in which bending plastic strains are allowed for. Thereafter, the integral equations are presented, including those for moments and shear resultants at internal points. The numerical implementation is carried out using the integral equations discretized in quadratic boundary elements and constant internal cells. An incremental-iterative method is employed to solve the elastoplastic equations.

Numerical examples are presented at the end of the work to illustrate the applicability of the formulation.  相似文献   


7.
In this article, a non‐singular formulation of the boundary integral equation is developed to solve smooth and non‐smooth interior potential problems in two dimensions. The subtracting and adding‐back technique is used to regularize the singularity of Green's function and to simplify the calculation of the normal derivative of Green's function. After that, a global numerical integration is directly applied at the boundary, and those integration points are also taken as collocation points to simplify the algorithm of computation. The result indicates that this simple method gives the convergence speed of order N ?3 in the smooth boundary cases for both Dirichlet and mix‐type problems. For the non‐smooth cases, the convergence speed drops at O(N ?1/2) for the Dirichlet problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
New computational forms are derived for Green's function of an exponentially graded elastic material in three dimensions. By suitably expanding a term in the defining inverse Fourier integral, the displacement tensor can be written as a relatively simple analytic term, plus a single double integral that must be evaluated numerically. The integration is over a fixed finite domain, the integrand involves only elementary functions, and only low‐order Gauss quadrature is required for an accurate answer. Moreover, it is expected that this approach will allow a far simpler procedure for obtaining the first and second‐order derivatives needed in a boundary integral analysis. The new Green's function expressions have been tested by comparing with results from an earlier algorithm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Computer simulations of atomic scale processes in solids are often associated with the issue of spurious reflection of elastic waves at the boundaries of a molecular dynamics domain. In this paper, we propose an approach to emulate non‐reflecting boundary conditions in atomistic simulations of crystalline solids. Harmonic response of the outer, non‐simulated, region is accurately represented by a memory function, related to the lattice dynamics Green's function. The outward wave flow is cancelled due to work done by the corresponding response forces. Performance of method, dependent on a series of method parameters, is illustrated on a benchmark problem. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Based on the full‐space Green's functions, a three‐dimensional time‐harmonic boundary element method is presented for the scattering of elastic waves in a triclinic full space. The boundary integral equations for incident, scattered and total wave fields are given. An efficient numerical method is proposed to calculate the free terms for any geometry. The discretization of the boundary integral equation is achieved by using a linear triangular element. Applications are discussed for scattering of elastic waves by a spherical cavity in a 3D triclinic medium. The method has been tested by comparing the numerical results with the existing analytical solutions for an isotropic problem. The results show that, in addition to the frequency of the incident waves, the scattered waves strongly depend on the anisotropy of the media. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
A small strain, three‐dimensional, elastic and elastoplastic Element‐Free Galerkin (EFG) formulation is developed. Singular weight functions are utilized in the Moving‐Least‐Squares (MLS) determination of shape functions and shape function derivatives allowing accurate, direct nodal imposition of essential boundary conditions. A variable domain of influence EFG method is introduced leading to increased efficiency in computing the MLS shape functions and their derivatives. The elastoplastic formulations are based on the consistent tangent operator approach and closely follow the incremental formulations for non‐linear analysis using finite elements. Several linear elastic and small strain elastoplastic numerical examples are presented to verify the accuracy of the numerical formulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a new and simple boundary‐domain integral equation is presented for heat conduction problems with heat generation and non‐homogeneous thermal conductivity. Since a normalized temperature is introduced to formulate the integral equation, temperature gradients are not involved in the domain integrals. The Green's function for the Laplace equation is used and, therefore, the derived integral equation has a unified form for different heat generations and thermal conductivities. The arising domain integrals are converted into equivalent boundary integrals using the radial integration method (RIM) by expressing the normalized temperature using a series of basis functions and polynomials in global co‐ordinates. Numerical examples are given to demonstrate the robustness of the presented method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The macroscopic behavior of materials is affected by their inner micro‐structure. Elementary considerations based on the arrangement, and the physical and mechanical features of the micro‐structure may lead to the formulation of elastoplastic constitutive laws, involving hardening/softening mechanisms and non‐associative properties. In order to model the non‐linear behavior of micro‐structured materials, the classical theory of time‐independent multisurface plasticity is herein extended to Cosserat continua. The account for plastic relative strains and curvatures is made by means of a robust quadratic‐convergent projection algorithm, specifically formulated for non‐associative and hardening/softening plasticity. Some important limitations of the classical implementation of the algorithm for multisurface plasticity prevent its application for any plastic surfaces and loading conditions. These limitations are addressed in this paper, and a robust solution strategy based on the singular value decomposition technique is proposed. The projection algorithm is then implemented into a finite element formulation for Cosserat continua. A specific finite element is considered, developed for micropolar plates. The element is validated through illustrative examples and applications, showing able performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Part 1 of this paper reports on the formulation of an advanced boundary—integral equation model for fracture mechanics analysis of cracked plates, subject to elastoplastic behaviour or other, related body force problems. The basis of this formulation contrasts with other BIE elastoplastic formulations in the use of the Green's function for an infinite plane containing a stress free crack. This Green's function formulation assures that the total elastic strain field for the crack problem is accurately imbedded in the numerical model. The second part of this paper reports on the numerical implementation of this algorithm, as currently developed. The anelastic strain field (residual strains, thermal strains, plastic strains, etc.) is approximated as piecewise constant, while the boundary data is modelled with linear interpolations. An iteration solution scheme is adopted which eliminates the need for recalculation of the BIE matrices. The stability and accuracy of the algorithm are demonstrated for an uncracked, notch geometry, and comparison to finite element results is made for the centre-cracked panel. The data shows that even the crude plastic strain model applied is capable of excellent resolution of crack tip plastic behaviour.  相似文献   

16.
Numerical issues arising when integrating hyperelasto‐plastic constitutive equations with elastic anisotropy, stemming from anisotropic damage, and plastic anisotropy as represented by kinematic hardening are discussed. In particular, solution algorithms for the corresponding non‐linear system of equations due to implicit integration algorithms are addressed. It is shown that algorithms like staggered iteration and quasi‐Newton techniques are superior to a pure Newton technique when the cpu time is compared. However, the drawback of the staggered and the quasi‐Newton technique is that rather small time steps must be taken to ensure convergence, which can be of importance when applying complex constitutive models in a finite element programme. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
该文引入非线性互补方法来求解边界元法的弹塑性问题,其中方程组由内部点应力方程和反映塑性本构定律的互补函数形成。涉及的域积分采用径向积分法转化为边界积分。通过受内压的厚壁圆筒的应力、位移和荷载-位移情况表明了该算法的精度。  相似文献   

18.
This paper presents four boundary element formulations for post buckling analysis of shear deformable shallow shells. The main differences between the formulations rely on the way non‐linear terms are treated and on the number of degrees of freedom in the domain. Boundary integral equations are obtained by coupling boundary element formulation of shear deformable plate and two‐dimensional plane stress elasticity. Four different sets of non‐linear integral equations are presented. Some domain integrals are treated directly with domain discretization whereas others are dealt indirectly with the dual reciprocity method. Each set of non‐linear boundary integral equations are solved using an incremental approach, where loads and prescribed boundary conditions are applied in small but finite increments. The resulting systems of equations are solved using a purely incremental technique and the Newton–Raphson technique with the Arc length method. Finally, the effect of imperfections (obtained from a linear buckling analysis) on the post‐buckling behaviour of axially compressed shallow shells is investigated. Results of several benchmark examples are compared with the published work and good agreement is obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The evaluation of volume integrals that arise in boundary integral formulations for non‐homogeneous problems was considered. Using the “Galerkin vector” to represent the Green's function, the volume integral was decomposed into a boundary integral, together with a volume integral wherein the source function was everywhere zero on the boundary. This new volume integral can be evaluated using a regular grid of cells covering the domain, with all cell integrals, including partial cells at the boundary, evaluated by simple linear interpolation of vertex values. For grid vertices that lie close to the boundary, the near‐singular integrals were handled by partial analytic integration. The method employed a Galerkin approximation and was presented in terms of the three‐dimensional Poisson problem. An axisymmetric formulation was also presented, and in this setting, the solution of a nonlinear problem was considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this paper is to discuss a boundary element formulation for non‐linear structural problems involving localization phenomena. In order to overcome the well‐known mesh dependency observed in local plasticity, a gradient plasticity model is used. An implicit boundary element formulation is proposed and the underlying consistent tangent operator defined. This formulation is based on the classical displacement and strain integral representations combined with an integral representation of the plastic multiplier. First numerical examples are presented to illustrate the application of the method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号