首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al2O3‐ or silica‐filled silicone membrane. It was observed that the silicone membranes, particularly the silica‐filled membrane, reduced the rate of water absorption (37°C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41226.  相似文献   

2.
The polyurethane composites with conducting carbon black (CB) were prepared by a solution‐precipitation process, which was followed by melt compression molding. The polyurethane used has good shape memory effect. The morphology of CB fillers in polyurethane matrix and the resulting conductivity of the composites were investigated. It has been found that CB fillers exist in the forms of aggregates. The percolation threshold is achieved at the CB concentration of 20 wt %. The presence of CB fillers decreases the degree of crystallinity of polycaprolactone (PCL) soft segments of the polyurethane. However, the composites still have enough soft‐segment crystals of polyurethane to fulfil the necessary condition for the shape memory properties. Dynamic mechanical data show that CB is an effective filler for the reinforcement of the polyurethane matrix, but does not deteriorate the stable physical cross‐link structure of the polyurethane, which is necessary to store the elastic energy in the service process of the shape memory materials. Addition of CB reinforcement in the polyurethane has influenced the strain recovery properties, especially for those samples with CB concentrations above the percolation threshold. The response temperature of the shape memory effect Tr has not been affected too much. Strain fixation Sf, which expresses the ability of the specimens to fix their strain, has been improved in the presence of the CB fillers. The final recovery rates Rf and strain recovery speeds Vr of the shape memory measurements, however, have decreased evidently. It is expectedly ascribed to the increased bulk viscosity as well as the impeding effect of the inter‐connective structure of CB fillers in the polymer matrix. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 68–77, 2000  相似文献   

3.
In this article, thermoplastic polyurethane (PU) with a shape memory property was synthesized. First, the PU prepolymer was prepared by reacting poly(tetramethylene glycol) with 4,4′‐diphenylmethane diisocyanate, then extended with various extenders such as linear aliphatic 1,4‐butanediol, benzoyl‐type 4,4‐bis(4‐hydroxyhexoxy)‐isopropylane and naphthalate‐type bis(2‐phenoxyethanol)‐sulfone or naphthoxy diethanol. The experimental results showed that the tensile strength, elongation at break, and initial modulus at 300% of these copolymer films were in the range of 31–64 Mpa, 42%–614%, and 8.26–11.5 MPa, respectively. Thermal analysis showed that the glass‐transition temperature of these copolymers was in the range of ?73°C to ?50°C for the soft segment (Tgs) and 70°C–106°C for the hard segment (Tgh) and that the melting point was in the range of 14.6°C–24.2°C for the soft segment and 198°C–206°C for the hard segment. The extender with a benzoyl or naphthalate group was better able to promote its shape memory property than was the regular polyurethane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 607–615, 2006  相似文献   

4.
Electroactive polymer actuators have the simple ability to be actuated by a voltage. In this study, we added a new function: the ability to be actuated by temperature. We used a bending‐electrostrictive actuator made of a polyurethane film. The polyurethane was designed to be rigid at room temperature but to be flexible at temperatures greater than 40°C because of the melting of the soft segment in the polyurethane. Therefore, the actuator showed slight bending in response to a voltage at room temperature. However, it showed significant bending at 61°C. The degree of bending at 61°C was 29 times greater than that at 13°C. Thus, the actuation ability was switched on at 61°C but switched off at 13°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1566–1570, 2005  相似文献   

5.
Fe3O4/poly (ε‐caprolactone)‐polyurethane (PCLU) shape memory nanocomposites were prepared by an in situ polymerization method. The thermal properties, magnetic properties, and shape memory properties of the nanocomposites were investigated systematically. The results showed that the Fe3O4 nanoparticles were homogeneously dispersed in the PCLU matrix, which ensured good shape memory properties of nanocomposites in both hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m?1/36.7 kA m?1). The nanocomposites started to recover near 40°C, which is slightly higher than body temperature. Thus, they would not change their deformed shape during the implanting process into the human body. Considering potential clinical applications, 45°C was chosen as shape recovery temperature which is slightly higher than 37°C, and the nanocomposites had high shape recovery rate at this temperature. With increasing content of Fe3O4 nanoparticles, the shape memory properties of the nanocomposites in an alternating magnetic field increased and the best recovery rate reached 97%, which proves that this kind of nanocomposites might be used as potential magnetic sensitive shape memory materials for biomedical applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

6.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   

7.
Some polyurethane anionomers synthesized by a two‐step substitution postreaction of urethane hydrogen atoms with CH2COONa groups were studied. The influence of ionic structures on the mechanical and electrical properties of polymers was followed. The carboxylated polyurethane anionomers were used to obtain electroconductive composites with polypyrrole, by immersion of polyurethane films in aqueous solution of pyrrole and oxidative chemical polymerization of the heterocyclic monomer with FeCl3. The proportion of polypyrrole in the composites increased by introduction of ionic groups. Stress–strain behavior and electrical conductivity of composites were compared with those of the anionomers. Incorporation of polypyrrole significantly enhanced the electrical conductivity but diminished mechanical properties. Some composites possess both satisfactory conductivity and mechanical properties. The results were explained by the morphological changes induced by ionic group and polypyrrole presence. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1385–1392, 2000  相似文献   

8.
A new thermoplastic polyurethane (TPU) was prepared from polylactide-b-poly(ethylene glycol)-b-polylactide (soft segment) and 2,4-toluene diisocyanate (hard segment). Then, TPU in various proportions (i.e., 50, 70, and 90 wt%) was blended with poly(ethylene-alt-maleic anhydride) (PEMA) to form samples coded as TPU/PEMA50, TPU/PEMA70, and TPU/PEMA90. The TPU and PEMA blend at ratio of 50:50 was reinforced by various graphene nanoplatelets (GNPs) contents. Three novel strategies were opted in this research, including design of novel thermoplastic polyurethane, blend of TPU with poly(ethylene-alt-maleic anhydride), and fabrication of graphene nanoplatelet-based nanocomposites. Hydrogen bonding between blend component and GNPs directed the formation of regular nanostructure. Consequently, unique self-assembled flower-shaped morphology was observed in blends as well as hybrid materials using the scanning electron microscopy technique. Physical interlinking between blend components and nanofiller was also responsible for rise in tensile modulus (39.3 MPa) and Young’s modulus (4.04 GPa) of the TPU/PEMA/GNP 5 hybrid compared with the neat blend. The crystallization property was studied by the X-ray diffraction analysis and differential scanning calorimetry. The melting temperature of about 70 °C was preferred for the shape recovery studies. The results from heat-induced shape recovery were compared with those of electroactive shape memory effects. Electrical conductivity was increased to 0.18 S cm?1 using 5 wt% GNP nanofiller, which was dependent on the applied temperature, as well. The original shape of TPU/PEMA/GNP 5 sample was almost 95 % recovered using heat-induced shape memory effect, while 98 % recovery was observed in an electric field of 40 V. Electroactive shape memory results were found to be better than those induced by heat stimulation effect.  相似文献   

9.
Development of shape memory polymer materials with integrated self-healing ability, shape memory property, and outstanding mechanical properties is a challenge. Herein, isophorone diisocyanate, polytetramethylene ether glycol, dimethylglyoxime, and glycerol have been used to preparation polyurethane by reacting at 80°C for 6 h. Then, graphene oxide (GO) was added and the reaction keep at 80°C for 4 h to obtain polyurethane/GO composite with self-healing and shape memory properties. Scanning electron microscopy shows that the GO sheets were dispersed uniformly in the polyurethane matrix. The thermal stability was characterized by thermogravimetric analyses. The tensile test shows that the Young's modulus of the composites increases from 38.57 ± 4.35 MPa for pure polyurethane to 95.36 ± 10.35 MPa for the polyurethane composite with a GO content of 0.5 wt%, and the tensile strength increases from 6.28 ± 0.67 to 15.65 ± 1.54 MPa. The oxime carbamate bond and hydrogen bond endow the composite good self-healing property. The healing efficiency can reach 98.84%. In addition, the composite has excellent shape memory property, with a shape recovery ratio of 88.6% and a shape fixation ratio of 55.2%. This work provides a promising way to fabricate stimulus-responsive composite with versatile functions.  相似文献   

10.
In this study, an easy and efficient synthesis of unsaturated plant oil triglycerides having isocyanate groups is reported. In the first step of the synthesis, the triglyceride was brominated at the allylic positions by a reaction with N‐bromosuccinimide, and in the second step, these brominated species were reacted with AgNCO to convert them to isocyanate‐containing triglycerides. At the end of the reaction, approximately 60–70% of the bromine was replaced by NCO groups, and the double bonds of the triglyceride were not consumed. When the amount of AgNCO was increased, the yield also increased. The final products were characterized with IR and 1H‐NMR, and polyurethanes and polyureas were obtained from these fatty isocyanates with alcohols and amines, respectively. The polymers were characterized by differential scanning calorimetry and thermogravimetric analysis. Differential scanning calorimetry curves showed that glycerin polyurethane showed a glass‐transition temperature at 19°C, castor oil polyurethane showed two glass‐transition temperatures at ?43 and 36°C, and triethylene tetraamine polyurea showed a glass‐transition temperature at 31°C. Some properties of the polymers, such as the tensile strength and swelling ratios, were also determined. The swelling rate of glycerin polyurethane was higher than that of castor oil polyurethane in dichloromethane. The equilibrium swelling ratio was highest for the castor oil polyurethane. The polyurethanes synthesized in this study had a Young's modulus around 50 kPa and a tensile strength around 0.01 N/mm2 (100 kPa). The tensile strength of glycerin polyurethane was higher than that of castor oil polyurethane. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
A polyurethane (PU) was developed from poly(dimethylamine‐co‐epichlorohydrin‐co‐ethylenediamine) (PDMAE) and polyethylene glycol (PEG) as soft segment and 2,4‐toluene diisocyanate (TDI) incorporating as hard segment. Later PU was blended with poly(ethylene‐co‐ethyl acrylate) (PEEA). Poly(vinyl alcohol)‐functionalized carbon black (CB‐PVA) nanoparticles was used as filler. The structure, morphology, mechanical, crystallization, and shape memory behavior (heat and voltage) were investigated methodically. Due to physical interaction of the blend components, unique self‐assembled network morphology was observed. The interpenetrating network was responsible for 83% rise in tensile modulus and 46% increase in Young's modulus of PU/PEEA/CB‐PVA 1 hybrid compared with neat PU/PEEA bend. Electrical conductivity was increased to 0.2 Scm?1 with 1 wt % CB‐PVA nanofiller. The original shape of sample was almost 94% recovered using heat induced shape memory effect while 97% recovery was observed in an electric field of 40 V. Electroactive shape memory results were found better than heat stimulation effect. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43481.  相似文献   

12.
Conducting polymer composites of polyethylene and polypyrrole (PE/PPy), polypropylene and polypyrrole (PP/PPy) and poly(methyl methacrylate) and polypyrrole (PPMA/PPy) were prepared by means of a chemical modification method resulting in a network-like structure of polypyrrole embedded in the insulating polymer matrix. The content of polypyrrole determined by elemental analysis varied from 0·25 to 17wt%. Electrical conductivity of compression-moulded samples depended on the concentration of polypyrrole and reached values from 1×10-11 to 1 S cm-1. The morphology of the composites and blends was studied by low-voltage scanning electron microscopy. The stability of PP/PPy composites was investigated by thermogravimetric analysis and by conductivity measurements during heating–cooling cycles. There was only a small drop in conductivity caused by the annealing of PP/PPy composites in air at temperatures up to 80°C. The results of thermogravimetric analysis showed a stabilizing effect of PPy on PMMA/PPy composites against thermal degradation. The antistatic properties of PMMA/PPy composites were demonstrated. © 1997 SCI.  相似文献   

13.
Triple‐shape‐memory polymers are capable of memorizing two temporary shapes and sequentially recovering from the first temporary shape to the second temporary shape and eventually to the permanent shape upon exposure to a stimulus. In this study, unique three‐component, multilayered films with an ATBTA configuration [where A is polyurethane (PU), B is ethylene vinyl acetate (EVA), and T is poly(vinyl acetate) (PVAc)] were produced as a triple‐shape‐memory material via a forced‐assembly multilayer film coextrusion process from PU, EVA, and PVAc. The two well‐separated thermal transitions of the PU–EVA–PVAc film, the melting temperature of EVA and the glass‐transition temperature of PVAc, allow for the fixing of the two temporary shapes. The cyclic thermomechanical testing results confirm that the 257‐layered PU–EVA–PVAc films possessed outstanding triple‐shape‐memory performance in terms of the shape fixity and shape‐recovery ratios. This approach allowed greater design flexibility and simultaneous adjustment of the mechanical and shape‐memory properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44405.  相似文献   

14.
High thermal conductivity polyurethane shape memory polymer (SMP) composites filled with aluminum nitride (AlN) were fabricated, and their thermal and thermomechanical properties were studied. The purpose of this microstructure is to improve the thermal properties of the SMPs at low filler content. Morphology of AlN filler in polyurethane SMP matrix and the resulting thermal conductivity was also investigated. Thermal studies have shown that AlN is an effective filler for reinforcement of the polyurethane SMP and that it does not deteriorate the stable physical crosslink structure of the polyurethane, which is necessary to store the elastic energy in the service process of the shape memory material. The thermal conductivities of these SMP composites in relation to filler concentration and temperature were investigated, and it was found that the thermal conductivity can increase up to 50 times in comparison with that of the pure SMP. Furthermore, differential scanning calorimetry tests have shown a significant decrease in the glass transition temperature of the switching segment. Dynamic mechanical studies have shown that the storage modulus of the composites increase with higher AlN content in both glassy and rubbery state. Damping peak decreases and also the curve of damping becomes broader with increasing filler content. Strain fixity rate which expresses the ability of the specimens to fix their strain has been improved slightly in the presence of AlN filler but the final recovery rate of the shape memory measurement has decreased evidently. POLYM. COMPOS., 28:287–293, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
Series of composites consisting of polypyrrole/montmorillonite nanocomposites in the matrix of Nylon6 has been synthesized and characterized in this work. The composites were processable, so that test samples were prepared by compression‐molding of the materials for electrical property measurements. Intercalated structures were confirmed by wide‐angle X‐ray diffraction and TEM studies for PPy/MMT nanocomposites. A two‐phase structure was determined for the fused samples consisting of two separated N6 and PPy phases by using scanning electron microscopy analyses. A conductivity threshold was measured at 15%(w/w) loading level of PPy in the composites. Electrical resistivity–temperature behavior of the samples was investigated and a resistivity peak was observed at 100°C for the samples. It was proved that the glass transition temperature of PPy around 100°C should be the responsible factor for the observed resistivity peak, as studied by thermogravimetic analysis and differential scanning calorimetry thermal methods. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Dynamic mechanical analysis and dielectric relaxation spectra of exfoliated nano graphite reinforced flouroelastomer composites were used to study their relaxation behavior as a function of temperature (−80°C to +40°C) and frequency (0.01 to 105 Hz). The effect of filler loadings on glass transition temperature was marginal for all the composites and Tg value was in the narrow range of 7.8–8.4°C, which has been explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. Strain‐dependent dynamical parameters were evaluated at dynamic strain amplitudes of 0.01–10%. The nonlinearity in storage modulus has been explained on the concept of filler‐polymer interaction and filler aggregation of the nano graphite platelets. The variation in real and complex part of impedance with frequency has been studied as a function of filler. The percolation of the nano graphite as studied by conductivity measurements is also reported. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

17.
Polyaniline or polypyrrole composites with fir or oak wood have been prepared by in situ polymerization of the corresponding monomers in an aqueous suspension of wood sawdust. The percolation threshold of compressed coated particles is located below 5 wt % of the conducting component and, above this limit, the conductivity of most composites was higher than 10?3 S cm?1. The conductivity of composites containing ca 30 wt % of conducting polymer was of the order of 10?1 S cm?1, an order of magnitude lower than that of the corresponding homopolymers, polyaniline and polypyrrole. The conductivity stability has been tested at 175°C. The polypyrrole‐based composites generally lasted for a longer time than pyrrole homopolymers, also on account of the improved mechanical integrity of the samples provided by the presence of wood. The reverse order was found with polyaniline composites. The dielectric properties of the composites were determined in the range of 100 MHz–3 GHz, indicating that thick layers of composite material, ~ 100 mm, are needed for the screening of the electromagnetic radiation below ?10 dB level in this frequency range. Nevertheless, considering the potential production cost of composites and their low weight, such composite materials could be of practical interest in the shielding of electromagnetic interference. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 807–814, 2005  相似文献   

18.
The glass transition temperature of the hard‐segment phase and the storage modulus of segmented polyurethane increased substantially in the presence of a small amount of tethered nano‐sized layered silicates from montmorillonite compared with their pristine state (by 44°C and by 2.8‐fold, respectively). Furthermore, the heat resistance and degradation kinetics of these montmorillonite/polyurethane nanocomposites were enhanced, as shown by thermogravimetric analysis. In particular, a 40°C increase in the degradation temperature and a 14% increase in the degradation activation energy occurred in polyurethane containing 1 wt % trihydroxyl swelling agent‐modified montmorillonite compared to that of the pristine polyurethane. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1741–1748, 2002  相似文献   

19.
Achieving water‐induced shape‐memory property in poly(D,L ‐lactide) (PDLLA), generated by means of advanced processing methods, opens possibilities to develop novel bioresorbable medical devices with shape‐memory properties activated by the human body without external heat. The main phenomena that affect the molecular movements that enable the water‐induced shape‐memory effect in an oriented PDLLA in an aqueous environment at physiological temperature are related to the water driven disruption of the intermolecular dipole‐dipole and/or hydrogen bonding of the oriented PDLLA chains and the subsequent decrease of the glass transition temperature (Tg) to the range of physiological temperature. The diffused water in the polymer matrix decreased the energy needed to finish the glass transition process explaining the higher shape‐recovery rate of the γ‐irradiated PDLLA with respect to the non‐γ‐irradiated PDLLA in an aqueous environment at physiological temperatures. The water‐induced decrease in the Tg was thermally reversible. The efficacy of the generated shape‐memory was tested with PDLLA shape‐memory nails in a pullout test, in which the pullout force of the PDLLA nails increased 360% during a seven day test period in vitro at 37°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4209–4218, 2013  相似文献   

20.
The purpose of this study is to develop a protective and thermally intelligent filler by optimizing the preparing conditions and the thermoresponsive property of PU foam. The specimens were polyurethane synthesized by a one step process with 4,4′‐diphenylmethane diisocyanate, polycaprolactone and 1,4‐butanediol. After dissolving the polyurethane in tetrahydrofuran, the polyurethane foam was manufactured by the salt leaching method. The appearance, compressive property, and thermal property of the manufactured foam as well as the shape memory effects were evaluated. In addition, air and water vapor permeabilities and the thermal insulation property were measured to examine the basic properties of the foam. The cell sizes of the completed foam were distributed in the range of 400–1,000 μm. The compressive stress of the foam was low in the initial compressive strain but increased dramatically above a compressive strain of 70%. However, the foam showed a very low capacity for compressive stress compared with an electrospun web or a film manufactured by using the identical shape memory polyurethane. The transition temperature of the foam was 30°C. The shape recovery and shape retention were 98% or higher. The foam, with a porous structure, was found to be generally good in both air and water vapor permeability. In the case of the foam that maintained its compressed shape below the transition temperature, these permeabilities of the foam decreased slightly, but not significantly. Because of the porous structure of the foam, the shape memory effect did not noticeably influence the permeability change with a change in temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号