首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new transformation technique is introduced for evaluating the two‐dimensional nearly singular integrals, which arise in the solution of Laplace's equation in three dimensions, using the boundary element method, when the source point is very close to the element of integration. The integrals are evaluated using (in a product fashion) a transformation which has recently been used to evaluate one‐dimensional near singular integrals. This sinh transformation method automatically takes into account the position of the projection of the source point onto the element and also the distance b between the source point and the element. The method is straightforward to implement and, when it is compared with a number of existing techniques for evaluating two‐dimensional near singular integrals, it is found that the sinh method is superior to the existing methods considered, both for potential integrals across the full range of b values considered (0<b?10), and for flux integrals where b>0.01. For smaller values of b, the use of the Lmethod is recommended for flux integrals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A sinh transformation has recently been proposed to improve the numerical accuracy of evaluating nearly singular integrals using Gauss–Legendre quadrature. It was shown that the transformation could improve the accuracy of evaluating such integrals, which arise in the boundary element method, by several orders of magnitude. Here, this transformation is extended in an iterative fashion to allow the accurate evaluation of similar types of integrals that have more spiked integrands. Results show that one iteration of this sinh transformation is preferred for nearly weakly singular integrals, whereas two iterations lead to several orders of magnitude improvement in the evaluation of nearly strongly singular integrals. The same observation applies when considering integrals of derivatives of the two‐dimensional boundary element kernel. However, for these integrals, more iterations are required as the distance from the source point to the boundary element decreases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Accurate numerical integration of line integrals is of fundamental importance to reliable implementation of the boundary element method. Usually, the regular integrals arising from a boundary element method implementation are evaluated using standard Gaussian quadrature. However, the singular integrals which arise are often evaluated in another way, sometimes using a different integration method with different nodes and weights. Here, a co‐ordinate transformation technique is introduced for evaluating weakly singular integrals which, after some initial manipulation of the integral, uses the same integration nodes and weights as those of the regular integrals. The transformation technique is based on newly defined semi‐sigmoidal transformations, which cluster integration nodes only near the singular point. The semi‐sigmoidal transformations are defined in terms of existing sigmoidal transformations and have the benefit of evaluating integrals more accurately than full sigmoidal transformations as the clustering is restricted to one end point of the interval. Comparison of this new method with existing coordinate transformation techniques shows that more accurate evaluation of weakly singular integrals can be obtained. Based on observation of several integrals considered, guidelines are suggested for the type of semi‐sigmoidal transformation to use and the degree to which nodes should be clustered at the singular points. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
A new transformation technique for evaluating nearly singular integrals   总被引:2,自引:2,他引:0  
Accurate evaluation of nearly singular integrals plays an important role in the overall accuracy of the Boundary Element Method (BEM). A new approach for the evaluation of nearly singular integrals particularly those with severe near singularity is described in this paper. This method utilizes a degenerate mapping to first reduce near singularity and then employs a variable transformation to further smooth out the resultant integrand. The accuracy and efficiency of the method are demonstrated through several examples that are commonly encountered in the applications of the BEM. Comparison of this method with some of the existing methods is also presented.  相似文献   

5.
Accurate numerical determination of line integrals is fundamental to reliable implementation of the boundary element method. For a source point distant from a particular element, standard Gaussian quadrature is adequate, as well as being the technique of choice. However, when the integrals are weakly singular or nearly singular (source point near the element) this technique is no longer adequate. Here a co‐ordinate transformation technique, based on sigmoidal transformations, is introduced to evaluate weakly singular and near‐singular integrals. A sigmoidal transformation has the effect of clustering the integration points towards the endpoints of the interval of integration. The degree of clustering is governed by the order of the transformation. Comparison of this new method with existing co‐ordinate transformation techniques shows that more accurate evaluation of these integrals can be obtained. Based on observations of several integrals considered, guidelines are suggested for the order of the sigmoidal transformations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The efficient numerical evaluation of integrals arising in the boundary element method is of considerable practical importance. The superiority of the use of sigmoidal and semi‐sigmoidal transformations together with Gauss–Legendre quadrature in this context has already been well‐demonstrated numerically by one of the authors. In this paper, the authors obtain asymptotic estimates of the truncation errors for these algorithms. These estimates allow an informed choice of both the transformation and the quadrature error in the evaluation of boundary element integrals with algebraic or algebraic/logarithmic singularities at an end‐point of the interval of integration. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This work presents new variable transformations for accurate evaluation of the nearly singular integrals arising in the 3D boundary element method (BEM). The proposed method is an extension of the variable transformation method in Ref. [4] for 2D BEM to 3D BEM. In this paper, first a new system denoted as (α,β) is introduced compared with the polar coordinate system. So the original transformations in Ref. [4] can be developed to 3D in (α,β) or the polar coordinate system. Then, the new transformation is performed by four steps in case the source point coincides with the projection point or five steps otherwise. For each step, a new transformation is proposed based on the approximate distance function, so that all steps can finally be unified into a uniform formation. To perform integration on irregular elements, an adaptive integration scheme combined with the transformations is applied. Numerical examples compared with other methods are presented. The results demonstrate that our method is accurate and effective.  相似文献   

8.
Benefited from the accuracy improvement in modeling physical problem of complex geometry and integrating the discretization and simulation, the isogeometric analysis in boundary element method (IGABEM) has been drawn a great deal of attention. The nearly singular integrals of 2D potential problem in the IGABEM are addressed by a semianalytical scheme in the present work. We use the subtraction technique to separate the integrals to singular and nonsingular parts, where the singular parts can be calculated by the analytical formulae derived by utilizing a series of integration by parts, while the nonsingular parts are calculated numerically with fewer quadrature points. Comparing the present semianalytical results with the ones of exact solutions, we find that the present method can obtain precise potential and flux densities of inner points much closer to the boundary without refining the elements nearby. Sufficient comparisons with other regularization schemes, such as the exponential and sinh transformation methods, are also conducted. The results in the numerical examples show the competitiveness of the present method, especially when calculating the nearly strongly and highly singular integrals during the simulation of the flux density.  相似文献   

9.
This paper presents a study of the performance of the non‐linear co‐ordinate transformations in the numerical integration of weakly singular boundary integrals. A comparison of the smoothing property, numerical convergence and accuracy of the available non‐linear polynomial transformations is presented for two‐dimensional problems. Effectiveness of generalized transformations valid for any type and location of singularity has been investigated. It is found that weakly singular integrals are more efficiently handled with transformations valid for end‐point singularities by partitioning the element at the singular point. Further, transformations which are excellent for CPV integrals are not as accurate for weakly singular integrals. Connection between the maximum permissible order of polynomial transformations and precision of computations has also been investigated; cubic transformation is seen to be the optimum choice for single precision, and quartic or quintic one, for double precision computations. A new approach which combines the method of singularity subtraction with non‐linear transformation has been proposed. This composite approach is found to be more accurate, efficient and robust than the singularity subtraction method and the non‐linear transformation methods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The accurate numerical evaluation of nearly singular boundary integrals is a major concerned issue in the implementation of the boundary element method (BEM). In this paper, the previous distance transformation method is extended into triangular elements both in polar and Cartesian coordinate systems. A new simple and efficient method using an approximate nearly singular point is proposed to deal with the case when the nearly singular point is located outside the element. In general, the results obtained using the polar coordinate system are superior to that in the Cartesian coordinate system when the nearly singular point is located inside the element. Besides, the accuracy of the results is influenced by the locations of the nearly singular point due to the special topology of triangular elements. However, when the nearly singular point is located outside the element, both the polar and Cartesian coordinate systems can get acceptable results.  相似文献   

11.
In this paper, we propose an efficient strategy to compute nearly singular integrals over planar triangles in R 3 arising in boundary element method collocation. The strategy is based on a proper use of various non‐linear transformations, which smooth or move away or quite eliminate all the singularities close to the domain of integration. We will deal with near singularities of the form 1/r, 1/r2 and 1/r3, r=∥ x ? y ∥ being the distance between a fixed near observation point x and a generic point y of a triangular element. Extensive numerical tests and comparisons with some already existing methods show that the approach proposed here is highly efficient and competitive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This work presents an improved approach for the numerical evaluation of nearly singular integrals that appear in the solution of two-dimensional (2D) boundary element method (BEM) using parabolic geometry elements. The proposed method is an extension of the sinh transformation, which is used to evaluate the nearly singular integrals on linear and/or circular geometry elements. The new feature of the present method is that the distance from the source point to parabolic elements is expressed as r2=(ξ?η)2g(ξ)+b2 where g(ξ) is a well-behaved function, η and b stand for the position of the projection of the nearly singular point and the shortest distance from the calculation point to the element, respectively. The sinh transformation therefore can be employed in a straight-forward fashion. The proposed method is shown to have the same advantages as the previous sinh transformation, in that it is straight-forward to implement, very accurate and can be applied to a wide class of nearly singular integrals.  相似文献   

13.
 A general algorithm of the distance transformation type is presented in this paper for the accurate numerical evaluation of nearly singular boundary integrals encountered in elasticity, which, next to the singular ones, has long been an issue of major concern in computational mechanics with boundary element methods. The distance transformation is realized by making use of the distance functions, defined in the local intrinsic coordinate systems, which plays the role of damping-out the near singularity of integrands resulting from the very small distance between the source and the integration points. By taking advantage of the divergence-free property of the integrals with the nearly hypersingular kernels in the 3D case, a technique of geometric conversion over the auxiliary cone surfaces of the boundary element is designed, which is suitable also for the numerical evaluation of the hypersingular boundary integrals. The effects of the distance transformations are studied and compared numerically for different orders in the 2D case and in the different local systems in the 3D case using quadratic boundary elements. It is shown that the proposed algorithm works very well, by using standard Gaussian quadrature formulae, for both the 2D and 3D elastic problems. Received: 20 November 2001 / Accepted: 4 June 2002 The work was supported by the Science Foundation of Shanghai Municipal Commission of Education.  相似文献   

14.
In this paper, we propose a function which, according to a parameter included therein, generates a new sigmoidal transformation and converges to the well‐known Sato polynomial transformation. Following well‐established procedures in the literature, we employ the present transformation in the numerical evaluation of weakly singular integrals, Cauchy principal value integrals and Hadamard finite‐part integrals. By several numerical examples it is shown that the present transformation is available for all kinds of singular integrals mentioned above and, in some cases, gives better results compared with those of traditional non‐linear transformations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
There exist the nearly singular integrals in the boundary integral equations when a source point is close to an integration element but not on the element, such as the field problems with thin domains. In this paper, the analytic formulations are achieved to calculate the nearly weakly singular, strongly singular and hyper-singular integrals on the straight elements for the two-dimensional (2D) boundary element methods (BEM). The algorithm is performed after the BIE are discretized by a set of boundary elements. The singular factor, which is expressed by the minimum relative distance from the source point to the closer element, is separated from the nearly singular integrands by the use of integration by parts. Thus, it results in exact integrations of the nearly singular integrals for the straight elements, instead of the numerical integration. The analytic algorithm is also used to calculate nearly singular integrals on the curved element by subdividing it into several linear or sub-parametric elements only when the nearly singular integrals need to be determined. The approach can achieve high accuracy in cases of the curved elements without increasing other computational efforts. As an application, the technique is employed to analyze the 2D elasticity problems, including the thin-walled structures. Some numerical results demonstrate the accuracy and effectiveness of the algorithm.  相似文献   

16.
Accurate numerical evaluation of integrals arising in the boundary element method is fundamental to achieving useful results via this solution technique. In this paper, a number of techniques are considered to evaluate the weakly singular integrals which arise in the solution of Laplace's equation in three dimensions and Poisson's equation in two dimensions. Both are two‐dimensional weakly singular integrals and are evaluated using (in a product fashion) methods which have recently been used for evaluating one‐dimensional weakly singular integrals arising in the boundary element method. The methods used are based on various polynomial transformations of conventional Gaussian quadrature points where the transformation polynomial has zero Jacobian at the singular point. Methods which split the region of integration into sub‐regions are considered as well as non‐splitting methods. In particular, the newly introduced and highly accurate generalized composite subtraction of singularity and non‐linear transformation approach (GSSNT) is applied to various two‐dimensional weakly singular integrals. A study of the different methods reveals complex relationships between transformation orders, position of the singular point, integration kernel and basis function. It is concluded that the GSSNT method gives the best overall results for the two‐dimensional weakly singular integrals studied. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the evaluation of the sensitivity, with respect to tangential perturbations of the singular point, of boundary integrals having either weak or strong singularity. Both scalar potential and elastic problems are considered. A proper definition of the derivative of a strongly singular integral with respect to singular point perturbations should accommodate the concomitant perturbation of the vanishing exclusion neighbourhood involved in the limiting process used in the definition of the integral itself. This is done here by esorting to a shape sensitivity approach, considering a particular class of infinitesimal domain perturbations that ‘move’ individual points, and especially the singular point, but leave the initial domain globally unchanged. This somewhat indirect strategy provides a proper mathematical setting for the analysis. Moreover, the resulting sensitivity expressions apply to arbitrary potential-type integrals with densities only subjected to some regularity requirements at the singular point, and thus are applicable to approximate as well as exact BEM solutions. Quite remarkable is the fact that the analysis is applicable when the singular point is located on an edge and simply continuous elements are used. The hypersingular BIE residual function is found to be equal to the derivative of the strongly singular BIE residual when the same values of the boundary variables are substituted in both SBIE and HBIE formulations, with interesting consequences for some error indicator computation strategies. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
The accurate numerical evaluation of nearly singular integrals plays an important role in many engineering applications. In general, these include evaluating the solution near the boundary or treating problems with thin domains, which are respectively named the boundary layer effect and the thin-body effect in the boundary element method. Although many methods of evaluating nearly singular integrals have been developed in recent years with varying degrees of success, questions still remain. In this article, a general non-linear transformation for evaluating nearly singular integrals over curved two-dimensional (2D) boundary elements is employed and applied to treat boundary layer effect and thin-body effect occurring in 2D potential problems. The introduced transformation can remove or damp out the rapid variations of nearly singular kernels and extremely high accuracy of numerical results can be achieved without increasing other computational efforts. Extensive numerical experiments indicate that the proposed transformation will be more efficient, in terms of the necessary integration points and central processing unit-time, compared to previous transformation methods, especially for dealing with thin-body problems.  相似文献   

19.
20.
采用边界元方法求解与运动介质相关声学问题时,难点之一是如何精确计算场点与源点重合所导致的奇异积分式。论文提出一种将具有奇性的单元面积分式拆分为奇性和非奇性积分部分分别进行计算的新方法。对奇性积分部分,经过严格的数学推导给出解析解;而对非奇性积分部分则通过高斯积分法处理。新方法可有效地提高边界元计算精度和效率,对运动介质中的有关声学问题的边界元数值计算具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号