首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
通过RMT 150b岩石力学刚性伺服机进行了不同加载速率的单轴压缩声发射试验,测试和分析了变形破坏过程中石灰岩和砂岩的声发射特性。结果表明:当加载速率增大时,强度为148.89~202.02 MPa的高强度石灰岩的单轴抗压极限强度和振铃计数极值均先增后减,而振铃计数频率先减后增;强度为77.52~94.59 MPa的低强度砂岩的单轴抗压极限强度随速率增大而减小,振铃计数极值先减后增,低速率时声发射活动在岩石损伤阶段活跃,振铃计数频率高且分布均匀,高速率时振铃计数易突增,振铃计数频率降低且分布不均。声发射能量则与振铃计数变化规律一致。研究结果对于利用声发射监测技术预测矿井围岩的失稳破坏具有一定意义。  相似文献   

2.
利用材料力学试验机及声发射信号检测分析系统,对小纪汗煤矿煤样进行了不同加载速率下单轴压缩过程中的声发射试验,得到了煤样应力应变全过程的声发射特征曲线,分析了不同加载速率下煤样的强度极限、声发射能量及振铃计数等特征参数的变化规律。研究表明:随着加载速率的增加,煤样抗压强度和压缩率呈现先上升后降低的变化趋势,煤样声发射能量释放形式由孤震型向震群型转变,在低加载速率下岩样能量释放形式主要表现为孤震型,在较高加载速率下则主要表现为震群型;不同加载速率下煤样振铃计数变化趋势大致相同,都经历缓慢增加与快速增加阶段,且随着加载速率的提高,声发射累计振铃计数明显减少;单轴压缩时煤样的破坏表现为单剪及双剪破坏,煤样声发射三维定位图与破裂实物图吻合较好。  相似文献   

3.
通过对类岩石进行不同加载速率下的单轴压缩试验,探究加载速率变化对类岩石应力-应变曲线的影响.研究结果表明:在一定范围内,随着加载速率的增加,类岩石的峰值应力呈递增趋势;在恒速率试验中,不同速率所对应的应力-应变曲线不相同;在变速率试验中,当速率突然增大时,应力-应变曲线会有明显的向上突变;不同速率也会影响类岩石的裂纹发展.  相似文献   

4.
为研究加载速率对粉砂岩受载破坏过程红外辐射能量的影响,定量分析粉砂岩加载过程红外辐射能量变化规律;开展了不同加载速率下粉砂岩单轴压缩红外辐射实验。研究结果表明:峰值应力随加载速率的增加而减小,不同加载速率下,差值模式下红外辐射温度最大值ΔTmax与应力变化具有较好的对应性,更能反映试样的破坏情况,ΔTmax的最高温差突增范围为1.0~1.7℃;主破裂时,累计红外辐射能增量ΔQ随时间变化呈缓慢增长趋势,破裂时对应的累计红外辐射能增量随加载速率的增大逐渐减小;ΔQ与机械功之间呈幂函数关系,随着机械功的增加,累计红外辐射能量增量呈现出先增大后缓慢增长趋势;不同加载速率下试样损伤红外前兆比的范围为0.02~0.285,且随加载速率逐渐减小。  相似文献   

5.
为研究加载速率和初始损伤对砂岩能量演化特性的影响,通过预压使部分岩样产生初始损伤,并进行原始岩样和含初始损伤岩样不同加载速率下的单轴压缩试验,分析了砂岩试件加载速率和初始损伤影响下的能量演化特征。试验结果表明,预压产生的初始损伤较为真实地反应岩石内部随机分布的微裂隙损伤,声发射技术能较为准确地表征损伤量及其位置信息;加载速率的不同对弹性能演化过程基本无影响,但造成岩样破坏前积聚的最大弹性能增加;初始损伤的存在使弹性能增长较无损伤岩样变缓,破坏前积聚的最大弹性能减少;从能量耗散的角度建立了岩石损伤演化方程,验算结果表明基于能量耗散分析建立的岩石损伤演化方程可以很好地描述岩石的损伤演化过程。  相似文献   

6.
为了揭示加载速率对废石胶结充填体变形破坏特征的影响,开展了5组加载速率下废石胶结充填体的单轴压缩试验,分析其力学特性、破坏模式和能量耗散的变化。结果表明:废石胶结充填体的峰值强度和弹性模量与加载速率分别呈正线性相关和二次函数增长关系;随着加载速率的增大,充填体试样的破坏模式由张拉劈裂破坏转向剪切破坏,且加载速率越大,破坏程度也越大;结合能量演化特征,废石胶结充填体均经历压密、线弹性、裂纹稳定扩展、裂纹加速扩展和峰后应变软化衰减5个阶段;随着加载速率的增大,废石胶结充填体总应变能和弹性应变能的涨幅越来越大,耗散能的涨幅变小,弹性应变能占比增大,峰前塑性减弱。  相似文献   

7.
基于单轴压缩下的花岗岩破坏试验,结合岩石破坏过程中的能量转化机制,对不同加载速率下花岗岩损伤变形的力学参数、能量转化机制进行了探讨。研究表明,随加载速率的提高,花岗岩的峰值应力、起裂应力逐渐增大,峰值应变、起裂应变逐渐降低,但起裂应变与峰值应变之比却呈现先减小后增大的趋势;随着加载速率的提高,花岗岩试件的峰前总吸收能U^0、可释放应变能U^1、耗散应变能U^2均逐渐增大;当加载速率较低时,花岗岩试件沿最大主应力方向实现劈裂、张拉破坏,此时宏观破坏裂纹较少;而当加载速率较高时,岩石试件由多条裂纹贯通破坏,其破坏形式属于劈裂裂纹与剪切裂纹共同主导的混合破坏模式。  相似文献   

8.
应力速率对岩石声发射特征影响的试验研究   总被引:1,自引:0,他引:1  
在刚性试验机上对花岗岩岩样进行单轴加载试验,在应力速率分别为20,30,40kN/min条件下对花岗岩受力变形过程中的力学特性和声发射特性进行了测试和分析。随应力速率的增大,花岗岩的抗压强度依次提高,应力速率越大,岩石的破坏越趋于剧烈;声发射活动伴随花岗岩单轴压缩破坏全过程,在压密阶段及弹性变形阶段,声发射活动不显著,声发射信号较少,而在应力水平达到岩样抗压强度的95%左右时,声发射参数出现剧增;应力速率为30kN/min时,声发射活动最剧烈,且破坏时的累积声发射数也最多。试验结果表明,应力速率对花岗岩的力学特性和声发射信号特性具有显著的影响。  相似文献   

9.
为研究大理岩在单轴应力条件下的实时轴向波速的变化特征,采用自主研发设计的超声波检测替代承压装置,完成了大理岩、Q345钢的单轴压缩试验与实时轴向超声波测试,并结合FFT方法分析了大理岩试样与Q345钢试样的波速、频谱特征。试验结果表明:在单轴加载条件下,Q345钢试件耦合面的接触性状是导致其波速增长的主要原因,而大理岩纵波波速随应力的变化则受耦合面接触性状与孔隙闭合特征的共同控制,大理岩在弹性范围内的波速变化可分为孔隙压密段与线弹性段两个阶段;试件端面接触性状越稳定,波速增长越慢,波速越高,次频带谐波能量越低;随着岩石内部的孔隙、裂纹被压密,纵波波速增大,频域信号的低频段能量逐渐向高频段转移。  相似文献   

10.
弹性范围内加卸载时岩石波速-应力-储能对应关系研究   总被引:1,自引:1,他引:1  
为了获得岩石储能的定量化表征方法,基于岩石内部储能可以通过其受载状态下岩石应力-应变关系曲线下的面积来定量化计算的原理,在实验室内测试了岩石试样在弹性范围内反复加卸载下波速-应力、应力-储能的对应关系。结果表明,对处于弹性阶段的大理岩试件进行多次反复加卸载,加载过程中波速随压应力线性增加,卸载过程中波速随压应力减少而线性下降;且同一应力下,加载对应的波速一般低于卸载时波速,但随着加卸载次数增加,这种同一应力下的加卸载波速之间的差值会越来越小,趋近于相同,此时整体的线性规律性更加明显。测试结果还显示,弹性阶段内,大理岩试样的单轴加卸载应力与能量密度较好地符合复合幂函数关系。通过应力作桥梁,构建出波速与能量之间的量化对应函数关系,从而找到了一种用波速来表征岩石储能的定量化方法。  相似文献   

11.
为研究不同加卸载方式下饱和岩石的力学演化特征,开展了等增幅加卸载、多重加卸载和微扰动加卸载3种不同方式的加卸载试验,分析了不同加卸载方式下的岩石力学特征。结果表明,3种加卸载方式下各循环曲线大体呈下凹型; 等增幅加卸载下塑性阶段的各循环曲线会在应力峰值前突变为上凸型,并在加载段后期发生振荡,且出现越来越早的下跌; 多重、微扰动加卸载下曲线连续性好,首循环应变远大于多重或微扰动循环; 多重加卸载下,随着循环次数增加,应力零点处的曲线斜率越来越大,多重循环较首循环的加载曲线斜率大; 微扰动加卸载下,塑性阶段的卸载曲线为近似垂直线,加载段曲线斜率呈现“增-减-增”三段式变化。各加卸载方式下软化阶段、峰值应变的关系均为: 多重加卸载>等增幅加卸载>微扰动加卸载; 塑性阶段的长短关系为: 等增幅加卸载>多重加卸载>微扰动加卸载,而依此顺序岩石也由剪切破坏向张拉破坏变化。  相似文献   

12.
以原煤、型煤煤样为研究对象,在三轴压缩变形过程中进行渗流试验,研究了不同加载速率下煤样的力学渗流特性。研究结果表明:加载速率对原煤的弹性模量影响较大,而型煤的弹性模量变化较小,且随着加载速率的增大,原煤、型煤的峰值应力均呈现先增大后减小的趋势;在破坏阶段,型煤的破坏呈现延性特征,而原煤的破坏是突发性的,更接近于现场煤与瓦斯突出的破坏过程;同一加载速率下,型煤和原煤的渗透率虽然都随着应力的增大先减小后增大,但前期型煤的渗透率降低幅度远远大于原煤,且型煤为剪切滑移破坏形式,峰后渗透率低于初始渗透率,而原煤为剪张破坏形式,峰后渗透率激增;随着加载速率的增大,煤样渗透率呈现更明显的“V”字形走势。  相似文献   

13.
通过变粒岩单轴压缩下声发射试验, 采集了应力-应变曲线与声发射数据。联合应力曲线, 总结了声发射积累计数和积累能量的演化特征。利用Welch谱估计法与小波能谱系数法分别对试件声发射信号功率谱密度及能量分布特征进行了分析。研究表明, 声发射积累能量比振铃积累计数能更好地预测岩石破坏; 在试件破坏前或产生较大裂纹时, 声发射信号峰值频率会有所下降, 其能量集中频段也在扩大; 在[78 kHz, 156 kHz]频段能谱系数持续增大且其值超过50%的声发射信号出现频繁的现象, 可作为试件破坏失稳的前兆信息。结合岩石声发射信号时频特性, 可为预测岩体破坏提供一种新思路。  相似文献   

14.
循环载荷下煤样能量转化与碎块分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
煤矿开采中煤体常处于反复加卸载过程,研究煤体在不同加载速率重复载荷作用下的能量转化与破坏机制对认清煤矿动力灾害本质具有指导意义。利用MTS815.03伺服实验系统,通过单轴循环加卸载试验,结合能量和分形理论,获得了不同加载速率下煤样变形破坏各阶段能量积聚、耗散和释放的转化机制及其与煤样碎块块度分布规律的内在关系,为开展重复载荷作用下煤岩破裂响应及破坏机制的研究提供依据。试验结果表明:煤样能量转化具有明显的阶段性特征,可分为能量初始积累阶段、能量加速积累阶段和能量快速耗散阶段。煤样破坏前耗散能所占比例经历了高—低—高的过程,而弹性能则相反,加载后期弹性能比例下降或耗散能比例的升高,预示着煤样进入加速破坏阶段;能量集聚和释放与加载速率密切相关,随着加载速率的增大,峰值前弹性能所占比例逐渐增加,煤样破坏前更多的能量以弹性能形式储存在煤样体内,岩石破坏后,更多的能量被释放出来,煤样破坏越剧烈,其宏观破坏形态由剪切张拉和劈裂破坏向弹射破坏过渡;循环加卸载下煤样碎块分形特征具有明显的分段性,在小于尺寸阈值范围内具有较好的自相似性特征,不同加载速率下碎块分形维数为2~3,且随加载速率的增加成线性增长;加载速率越大碎块分形维数越大,煤样破碎程度越高,大块碎块所占比例越小,煤样碎块越破碎且单块碎块质量越小,煤样发生动力灾害的危险性越大。  相似文献   

15.
不同尺寸砂岩破坏全过程声发射主频分析   总被引:3,自引:3,他引:0  
对直径相同、高径比不同的4组红砂岩试样进行了单轴压缩声发射试验, 获得了各试样的力学基本参数及试验全过程所释放的全部声发射原始波形信号, 在对每个声发射信号逐一去噪的基础上, 通过快速傅里叶变换提取其主频, 联合时频域共同分析尺寸效应对岩石力学性质及声发射信号主频特征的影响。结果表明, 随着高径比增大, 试样的脆性破坏程度明显, 破裂时的延性减弱;红砂岩声发射信号主频分布范围为10~175 kHz, 明显成频段分布;尺寸效应对声发射信号主频的影响主要体现在频段分布的差异上, 30~60 kHz、140~155 kHz和160~175 kHz为各尺寸试样所共有的频段, 其中30~60 kHz频段占比最大, 对应着岩石损伤演化的最主要破坏模式;岩石变形破坏过程中, 主频分布特征朝复杂离散方向持续转化。  相似文献   

16.
层理构造普遍存在于煤矿地下矿柱岩体中,对其稳定性造成一定的威胁。通过含层理及均质岩石试件单轴压缩实验和CT层析扫描测试,分析了含层理岩石破坏特征,损伤演化过程中的声发射参数特征、能量耗散与传递规律,根据改进后的Duncan模型建立基于声发射、能量耗散参数的单轴损伤破坏模型。结果表明:均质岩石试件整体失稳的主要原因为纵向拉伸破坏,含层理试件宏观主裂纹为单一剪切破坏形式,具有明显的剪切破碎带,层理的软弱结构面会在一定程度上削弱矿柱的承载能力;含层理构造岩石试件失稳破坏主要发生在塑性变形阶段(cd),对应于AE剧烈期,耗散应变能出现明显的起伏波动,轴向荷载60%σ_c~σ_c区间内,63%t_c~t_c时间阶段内;而均质岩石试件的失稳性破坏预测的重点在屈服点前后时间区间内,该区间内耗散应变能的趋势为缓慢下降(屈服点c前)→上升(屈服点c后)→骤增(破坏点d)。建立基于声发射和能量耗散参数的单轴损伤破坏模型,对于含层理试件理论计算结果与试验结果平均偏差率分别为8.2%和9.5%;均质试件的理论计算结果与试验结果平均偏差率分别为18.4%和19.3%。  相似文献   

17.
魏辉 《煤矿安全》2020,51(5):197-202
为了进一步研究不同煤岩系统的冲击显现机理及能量演化特征,利用理论计算及RFPA数值模拟方法从能量角度对不同煤岩系统进行了对比分析。研究结果表明:顶底板发生弯曲破坏的轴向应力与顶底板强度成正比例关系;随着硬顶硬底、硬顶软底、软顶硬底和软顶软底等4种煤岩系统整体强度的逐渐降低,巷道周围最大弹性能密度依次为273、252、224、216 kJ/m3,减小了冲击能的积聚程度;此外,模拟结果很好地解释了坚硬顶底板巷道容易积聚能量并发生冲击破坏,而软弱顶板巷道可以耗散弹性能减小冲击地压的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号