首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long‐aliphatic‐segment polyamides were prepared based on hexamethylenediamine and α,ω‐(CH2)x biosynthetic diacids (x = 10, 11, 12). The pertinent monomers (salts) were isolated as solids, thoroughly characterized for the first time, and then submitted to an anhydrous melt prepolymerization technique. The obtained prepolymers exhibited in the range of 5 100–11 800 g · mol?1, and the molecular weight was further increased by up to 55% through solid‐state finishing. The suggested overall polyamidation cycle was conducted at short melt‐reaction times, so as to avoid any thermal degradation, and was proved efficient, indicating similar reactants polymerizability independently of the methylene content.

  相似文献   


2.
Summary: The effect of silica and its surface treatment on the mechanical properties of composites was studied as part of the evaluation of cyanate ester matrices as potential electronic encapsulants. Three filler surface treatments were used, as a qualitative interfacial adhesion scale, in an attempt to gauge the magnitude of interfacial adhesion between untreated filler and the cyanate ester matrix. There was strong interfacial adhesion between matrix and untreated filler. The level of silica content most affected composite modulus and fracture toughness. Filler surface treatment most affected composite strength and fracture toughness/energy. Composite fracture was found to occur via crack pinning and/or crack blunting depending on the strength of adhesion. The composites evaluated were found to possess suitable mechanical properties for potential use as electronic encapsulants.

  相似文献   


3.
Summary: In this paper, we describe the use of artificial opals from polymer beads as effect pigments in transparent industrial and automotive coatings. For this purpose, we synthesized monodisperse colloids from fluorinated methacrylates by surfactant‐free emulsion polymerization. The fluorinated monomers, in combination with crosslinking, lead to a refractive index contrast, thermal stability, and solvent resistivity necessary for use as effect pigments. After crystallization of the monodisperse polymer beads, crystal flakes with iridescent colors can be obtained. The crystal flakes can act as effect pigments in various transparent industrial and automotive coatings. Due to photonic crystal behavior of effect pigments, color flops up to 100 nm are observed.

Crystal flakes of CS ‐7 as effect pigments in a transparent coating. The diameter of the tube is 5 mm.  相似文献   


4.
In gas assisted injection moulding the melt front advancement has a considerable effect on the gas penetration. The evaluation of an appropriate melt filling is an important step to avoid instabilities in the process sequence. Taking a sample moulded part a procedure is presented that enables the part designer to evaluate required melt and gas injection points according to the gas injection technique. Using finite element simulations, different calculations for the melt front advancement lead to the correct gate location.

Presentation of different degrees of filling for the optimised article geometry.  相似文献   


5.
In the field of hot plate welding, experimental investigations show that the stress cracks are caused by inherent stresses in the component, which are induced in the part while it is being heated on the tool. For the better understanding of the process parameters and their effects on the phenomenon of stress cracking, a simple theoretical model for the calculation of the temperature and the stress field is to be developed. The application of the presented method shows the effects of the process parameters on the phenomenon of stress cracking and correlates with the experimental results of further investigations.

Theoretical stress distribution.  相似文献   


6.
This study reports for the first time on the enhancement of the bleaching effect achieved on cotton using laccase enzyme. Laccases applied in short‐time batchwise or pad‐dry processes prior to conventional peroxide bleaching, improved the end fabric whiteness. The whiteness level reached in the combined enzymatic/peroxide process was comparable to the whiteness in two consecutive peroxide bleaches.

Effect of 10 min laccase pre‐treatment at 60 °C, pH 5 on fabrics whiteness before and after a conventional hydrogen peroxide bleaching.  相似文献   


7.
Spherical silica nanoparticles were mixed with a PP matrix and the thermal behavior of the nanocomposites was studied. The nanocomposites presented drastic improvements in the degradation behavior under thermo‐oxidative conditions, showing complex multistep processes. Under inert conditions the improvements were lower. Our results indicate that mechanisms based on the labyrinth effect, nanoconfinement or trapping model, are not able to explain the whole enhanced thermal stability in these nanocomposites. Moreover, the high specific area of the nanoparticles (≈70 m2 · g?1) indicates that processes based on the adsorption of volatile polar products coming from the oxidative degradation mechanism are plausible.

  相似文献   


8.
Summary: The chemical metallization of aqueous bentonite dispersions afforded stable aqueous hybrid nanoparticle dispersions containing simultaneously dispersed sodium bentonite nanoplatelets together with bentonite supported silver, palladium, or copper nanoparticles with average metal nanoparticle diameters varying between 14 and 40 nm. Such aqueous bentonite/metal hybrid nanoparticle dispersions were blended with cationic PMMA latex to produce PMMA hybrid nanocomposites containing exfoliated polymer‐grafted organoclay together with bentonite supported metal nanoparticles. This dispersion blend formation was investigated with respect to the role of nanostructure formation and mechanical properties. Palladium/bentonite hybrid dispersions were used as catalysts for hydrogenation reactions and the electroless plating of copper. In contrast to the conventional organoclay nanocomposites, the PMMA hybrid nanocomposites, containing simultaneously dispersed organoclay nanoplatelets together with organoclay supported silver nanoparticles, exhibited high antimicrobial activity against the ubiquitous bacterium Staphylococcus aureus, even at low silver content.

Preparation of a polymer hybrid nanocomposite.  相似文献   


9.
Summary: An organic‐inorganic hybrid material consisting of a 3‐(methacryloxy)propyl functionalized SiO2/MgO framework was synthesized. This hybrid was successfully reacted with styrene, butyl acrylate and butyl methacrylate via a free radical emulsion polymerization to form polymer composites. The polymer composites were investigated by means of FT‐IR spectroscopy, TGA, DSC and rheometry. It is shown that the polymer is linked covalently to the organic/inorganic hybrid. Although the polymer content is rather low, the composites exhibit a polymer‐like character and enhanced mechanical properties compared to the corresponding homopolymers.

  相似文献   


10.
Summary: A new charring agent (CA), a derivative of triazines, was synthesized. The flame retardancy and thermal behavior of a new intumescent flame‐retardant (IFR) system for PE (PE‐IFR) were investigated by limited oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), and FTIR spectroscopy. The TG curves shows that the amount of residue of IFR‐PE system are largely increased compared to those of PE at temperatures ranging from 350 to 700 °C. The new PE‐IFR system can apparently reduce the amount of decomposing products at higher temperatures and promotes the formation of carbonaceous charred layers. It showed a distinct synergistic flame retardant effect (SE) between nitrogen and phosphorus. The flame retardant PE composition was optimized to achieve a LOI value of 31.2 and UL‐94 V‐0 performance with the synthesized charring agent, ammonium polyphosphate (APP).

TG curves of PE, APP, CA, and different PE/CA/APP systems.  相似文献   


11.
Summary: Hydroxyapatite, chitosan, and aliphatic polyester were compounded using a twin‐screw extruder. The polyesters include poly(ε‐caprolactone) (PCL), poly(lactic acid) , poly(butylene succinate) (PBS), and poly(butylene terephthalate adipate). The mass fraction of chitosan ranged from 17.5 to 45%, while that of HA ranged from 10 to 30%. These blends were injection molded and evaluated for thermal, morphological, and mechanical properties. The addition of hydroxyapatite decreased the crystallinity in chitosan/PBS blends, while in blends containing chitosan/PCL, the crystallinity increased. Addition of hydroxyapatite significantly decreased the tensile strength and elongation of polyester/hydroxyapatite composites as well as chitosan/polyester/hydroxyapatite composites with elongations undergoing decreases over an order of magnitude. The tensile strength of the composite was dictated by the adhesion of HA to the chitosan/polyester matrix. The tensile strength of composites containing hydroxyapatite could be predicted using the Nicolai and Narkis equation for weak filler adhesion (K ≈ 1.21). Tensile‐fractured and cryogenically‐fractured surface indicates extensive debonding of hydroxyapatite crystals from the matrix, indicating weak adhesion. The adhesion of hydroxyapatite was higher for pure polyester than those containing chitosan and polyester. The modulus of the composites registered modest increase. The two main diffraction peaks observed using WAXS are unaffected by the amount of chitosan or hydroxyapatite.

  相似文献   


12.
Summary: It was demonstrated that it is possible to produce prepolymers with a number‐average degree of polymerisation on the order of 5–40 directly in a liquid‐liquid dispersion in less than three hours. It was also shown that prepolymers made via this route and rapidly crystallised by the addition of a dispersant at ambient temperature are more porous than prepolymers made in an industrial liquid melt process.

SEM micrograph of prepolymers pLL‐PTA with \overline {DP} _{\rm n} = 28, dp ∈ 63–125 μm.  相似文献   


13.
The crystallization behavior of pure nylon 6 (N6) and its nanocomposite with montmorillonite has been studied in detail. The crystallization rate of N6 is faster in the presence of clay compared to pure N6, as revealed by light scattering experiments. Nylon 6 crystallizes exclusively in the γ‐form in the nanocomposite because of the epitaxial crystallization, which is also revealed from the transmission electron microscopic images (sandwiched structure) of the crystallized sample. The storage modulus of the nanocomposite is always higher than the pure nylon 6, irrespective of crystallization temperatures. Much higher increment of storage modulus for pure nylon 6 with increasing crystallization temperature is explained by the higher amount of the thermally stable α‐form at higher temperature. A unique mechanism has been proposed to illustrate the crystallization behavior of nylon 6 in the presence of the clay particles.

Transmission electron micrograph of N6C3.7 crystallized at 210 °C, showing the typical shish‐kebab type of structure.  相似文献   


14.
15.
Summary: An original direct melt extrusion processing of nylon 6/clay nanocomposites was reported based on pristine (Na+‐based) montmorillonite as well as a simple approach using a typical two‐screw extruder. By the application of intercalation agents as the thermodynamic assistants, this method is as an appropriate procedure for industrialized manufacture together with much lowered production cost. Interestingly enough, the synergistic effects of montmorillonite with other inorganic particulates was observed for the first time here.

X‐ray diffraction patterns of pristine MMT and nylon 6/MMT composites with grouped intercalation agents.  相似文献   


16.
Summary: New PPSF/PET (poly(phenyl sulfone)/poly(ethylene terephthalate)) blends rich in PPSF were obtained by direct injection molding. Biphasic morphologies with a very large interface area/dispersed phase volume ratio were obtained and were attributed to a low interfacial tension in the melt state, a consequence of the reactions observed between the components of the blends. This favorable morphology led to small strain mechanical properties close or slightly above those predicted by the direct rule of mixtures, and more significantly, to elongations at break of the blends higher than that of the PPSF matrix.

Morphology of the cryogenically‐broken etched surface of a PPSF/PET 75/25 blend.  相似文献   


17.
Summary: Single‐site coordination polymerization catalysts are considered one of the most important developments on the technology of olefin polymerization during the last two decades. Among the several new capabilities of these catalysts is the ability to produce polymer molecules having narrow molecular weight distribution and long chain branches. These advances in polymer synthesis have stimulated the development of mathematical models to describe and predict several features of their molecular architectures. Many modeling techniques have been used for this purpose, including instantaneous distributions, population balances, the method of moments, and Monte Carlo simulations. This article reviews the mathematical models developed over the last decade to quantify the microstructure of polymers made with single‐site catalysts with special emphasis on the mechanism of long chain branch formation by terminal branching.

  相似文献   


18.
PTFE powder irradiated in air at room temperature was studied by infrared spectroscopy, potentiometric titration with sodium hydroxide, and polyelectrolyte titration with poly(diallyl dimethylammonium chloride). Through the radiation‐induced degradation ? COF groups are formed in the material, which can be hydrolyzed to ? COOH groups. About 10–20% of the ? COOH groups are located at the surface of the PTFE particle. The ? COOH groups start to decompose under oxidizing conditions at temperatures above 200 °C. The decarboxylation results in the formation of ? CF?CF2 groups, which are oxidized to ? COF groups in the presence of air.

  相似文献   


19.
Electrospun fibers of poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐bithiophene] (F8T2) with exceptional electro‐optical performance are obtained. The I/T characteristics measured in fibers with 7–15 µm diameter and 1 mm length show a semiconductor behavior; their thermal activation energy is 0.5 eV and the dark conductivity at RT is 5 × 10?9 (Ω cm)?1. Besides exhibiting a photosensitivity of about 60 under white light illumination with a light power intensity of 25 mW · cm?2, the fibers also attain RT photoluminescence in the cyan, yellow, and red wavelength range under ultraviolet, blue, and green light excitation, respectively. Optical microscope images of F8T2 reveal homogeneous electrospun fibers, which are in good agreement with the uniformly radial fluorescence observed.

  相似文献   


20.
Electrically conductive, cationically UV‐cured composites were prepared using exfoliated graphite plates (EGP) with cycloaliphatic epoxy resin and polyalcohol binder system. Exfoliated graphite (EG) was obtained from natural flake graphite through chemical and thermal treatment. Sonication of EG in solvent produced EGP. Characterization of graphite samples by XRD showed structural similarity between original graphite and EGP. UV curing behavior was characterized using photoDSC. Electrical resistivity measurements of the composites as a function of EGP concentration showed that at low filler concentration the binder system can influence the electrical percolation behavior. Some formulations showed electrical percolation at less than 1 vol.‐% of EGP filler.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号