首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
Two new polyimides (ODA‐PI and HDA‐PI) having 1,4‐phenylenediethynylene unit and octyloxy groups were synthesized. Judging from inherent viscosities of their precursor PAAs (1.42 and 1.62 dL · g?1), the two PIs were very high in molecular weight. Casting and thermal imidization of PAAs results polyimides with good‐quality films. They were stable up to 364 °C and showed no crystallites. UV‐vis and PL spectra in NMP solutions of both PIs showed maxima at 442 and 501 nm, respectively, while PL spectra in ≈10 µm thick films exhibited a maximum at 540 nm. CV indicates that two PIs were electrochemically active in redox region. The devices with construction of ITO/PEDOT/PIs/BAlq3/LiF/Al exhibited turn‐on voltages of 6.5 V in ODA‐PI and 7.5 V in HDA‐PI and emitted a bright bluish‐green light. ODA‐PI and HDA‐PI showed maximum luminescence of 256 and 316 cd · cm?2, respectively, at the same voltage of 12 V.

  相似文献   


2.
Observations are reported on isotactic poly(propylene) (iPP) in a series of tensile loading‐unloading tests with a constant strain rate at room temperature. A constitutive model is developed for the elastoplastic behavior of a semicrystalline polymer at isothermal uniaxial deformations with small strains. The stress‐strain relations are determined by 5 adjustable parameters which are found by fitting the experimental data.

The stress σ (MPa) versus strain ε in a tensile loading‐unloading test with the maximum strain εmax = 0.09. Circles: experimental data. Solid line: results of numerical simulation.  相似文献   


3.
The role of entanglements in obtaining a homogeneous product of ultra high molecular weight polyethylene (UHMW‐PE) has been explored. Studies performed in this report show that a disentangled state before melting is a prerequisite to obtain homogeneous products of an intractable polymer like UHMW‐PE. The disentangled state is obtained directly from the reactor by controlling the polymerisation conditions or in the solid state when there is enhanced chain mobility along the c‐axis of a unit cell. The disentangled state is maintained in the melt over a period of time, invoking implications in polymer rheology. This approach is applicable to polymers in general. The homogeneous fully sintered UHMW‐PE, obtained for the first time, shows a considerable decrease in oxygen permeability, and increase in toughness and fatigue resistance. Such homogeneous products of UHMW‐PE are of beneficial in highly demanding applications, especially in knee‐prosthesis, where the polymer is used as an inlay between the human bone and a metal or ceramic part, which slides against the polyethylene component during normal gait.

Phase diagram for the extended chain crystals.  相似文献   


4.
The cobalt‐mediated radical polymerization of acrylonitrile in DMSO using cobalt (II) acetylacetonate [Co(acac)2] as mediator is studied. Both the evolution of molecular weight and conversion over time under various conditions are monitored. Molecular weights increase sharply at the beginning of the reaction and subsequently grow linearly with conversion. No branching of the polymer is observed by 13C NMR. By a careful design of the reaction parameters, number‐average molecular weights >1.2 · 105 g · mol?1 with a PDI around 2.4 together with conversions of up to 90% within 24 h are achieved. The copolymerization parameters of acrylonitrile with methyl methacrylate in DMSO at 30 °C are determined using the Kelen‐Tüdõs approach giving rAN = 0.33, rMMA = 0.71.

  相似文献   


5.
Summary: The preparation of poly(ε‐caprolactone)‐g‐TiNbO5 nanocomposites via in situ intercalative polymerization of ε‐caprolactone initiated by an aluminium complex is described. These nanocomposites were obtained in the presence of HTiNbO5 mineral pre‐treated by AlMe3, but non‐modified by tetraalkylammonium cations. These hybrid materials obtained have been characterized by Fourier transform infrared absorption spectroscopy, wide‐angle X‐ray scattering, scanning electron microscopy, and dynamic mechanical analysis. Layered structure delamination and homogeneous distribution of mineral lamellae in the poly(ε‐caprolactone) (PCL) is figured out and strong improvement of the mechanical properties achieved. The storage modulus of the nanocomposites is enhanced as compared to pure PCL and increases monotonously with the amount of the filler in the range 3 to 10 wt.‐%.

SEM image of the fractured surface of a PCL‐TiNbO5 nanocomposite film.  相似文献   


6.
The copolymerization of 1,8‐naphthalimide derivatives (as fluorophore) with acrylonitrile has been investigated. The photophysical characteristics of monomeric and polymeric fluorophores in N,N‐dimethylformamide solution have been determined and discussed. During copolymerization, no changes in the chromophoric systems of the fluorophore occur. The influence of the studied monomeric 1,8‐naphthalimide fluorophores upon the structurally bleached polyacrylonitrile has been determined. Infrared absorption characteristics of the polymerizable 4‐alkoxy‐ and 4‐allyloxy‐N‐substituted‐1,8‐naphthalimides have been measured and discussed. The effect of the substituents upon the vibration frequencies of the carbonyl and allylic groups has been established.

Blue fluorescent polyacrylonitrile copolymers with 1,8‐naphthalimides side‐group.  相似文献   


7.
Summary: This paper reports on the photocuring kinetics of protonic‐acid‐initiated cationic polymerizations of UV‐curable epoxy‐based SU8‐negative photoresist systems with and without silica nanoparticles, as assessed using photo‐DSC, FTIR spectroscopy, UV‐vis spectroscopy, and SEM. Photo‐DSC analysis using an autocatalytic kinetic model demonstrated that the cross‐link density and cure rate increased as the concentration of silica nanoparticles with surface silanol groups increased to 2.5 wt.‐%. This result was confirmed by FTIR spectroscopy, and suggests that the presence of silica nanoparticles of up to 2.5 wt.‐% promoted the cure conversion and cure rate of the UV‐curable hybrid organic/inorganic negative photoresists due to the synergistic effect of silica nanoparticles acting both as an effective flow or diffusion‐aid agent and as a proton‐donor cocatalyst during the cationic photopolymerization process. The decrease in the cross‐link density that occurred when the silica content was higher than 2.5 wt.‐% was attributed to aggregation between silica nanoparticles due to their high surface energy.

SEM photograph at the film‐air interface of the UV‐cured hybrid organic/inorganic photoresist containing 10 wt.‐% silica nanoparticles.  相似文献   


8.
Summary: Poly(ε‐caprolactone)‐polyglycolide‐poly(ethylene glycol) monomethyl ether random copolymers were synthesized from ε‐caprolactone (ε‐CL), glycolide (GA) and poly(ethylene glycol) monomethyl ether (MPEG) using stannous octoate as catalyst at 160 °C by bulk polymerization. The copolymers with different composition were synthesized by adjusting the weight ration of reaction mixture. The resultant copolymer with a weight ratio (10:15:75) of MPEG2000, GA, and CL was characterized by IR, 1H NMR, GPC and DSC. The new biodegradable copolymer has potential for medical applications since it is combined with properties of PCL, PGA and MPEG.

  相似文献   


9.
Summary: A novel hyperbranched poly(β‐ketoester) was synthesized from 2‐(acetoacetoxy)ethyl acrylate by the Michael addition in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as catalyst. 1H NMR integration experiments revealed that the degree of branching in the poly(β‐ketoester) was remarkably high at a level of 82.9%. The number‐average molecular weight of the polymer was between 2 100 and 12 000 and increased with reaction temperature and conversion.

Synthesis of hyperbranched polymer by Michael addition of AAEA.  相似文献   


10.
Butyl methacrylate and 1‐octadecanethiol telomers were prepared by radical reactive extrusion. The main advantages of the use of this processing technique are that mass reactions can be conducted and continuous production is achieved within a reduced reaction time and a correct temperature control. Preliminary studies concerned the choice of the reactants for the telomerization reaction and the adaptation of the telomerization reaction to the reactive extrusion process. The transfer constant to C18H37SH was measured, and then experimental studies were conducted to verify that the hypothesis and approximations made for kinetic modeling are realistic. Particularly, it was shown that the use of relatively high chain‐transfer agent to monomer concentration ratio had no perceptible effect on the monomer conversion kinetic. These results allowed the choice of reactive extrusion conditions. Telomers were prepared using a laboratory co‐rotating twin‐screw extruder. The effect of reaction conditions (temperature, 1‐octadecanethiol to monomer concentration ratio) and of processing conditions (throughput, screw rotation speed) on the residence time distributions, molar mass and monomer conversions were examined. This study allowed the continuous synthesis of butyl methacrylate telomers having variable controlled molar masses and complete monomer conversion.

Screw profile used in reactive extrusion telomerization.  相似文献   


11.
Stable layers of nearly monodisperse spheres of β‐polymorphic poly(vinylidene fluoride) with iridescent properties are prepared. The colloidal crystalline arrays (CCAs) were characterized by optical microscopy, differential scanning calorimetry (DSC), and FT‐IR spectroscopy. FT‐IR spectroscopic and wide‐angle X‐ray scattering (WAXS) studies revealed a β‐polymorphic PVF2 structure, the DSC study showed that the level of crystallinity in the CCA was much higher than that in the melt‐crystallized sample, and UV‐visible spectroscopy showed extinction peaks at 323 and 510 nm in the CCAs. The β‐polymorphic PVF2 structure, along with the optical extinction properties of these CCAs, raises the prospect of their application in optical filters and/or piezoelectric sensors.

Optical micrograph of PVF2 CCA films cast on glass substrates.  相似文献   


12.
The 2‐ethoxycarbonylallyl 5‐(1,2‐dithiolane‐3‐yl)‐pentanoate monomer (AODS) includes in its molecular structure C?C and S? S reactive bonds allowing it to behave as a bi‐functional monomer, possessing two groups, however, with different reactivity for use in polymer chain building. The polymerization‐specific features of this monomer are the absence of auto‐acceleration and polymer chain crosslinking. Polymerization proceeds readily through most free‐radical initiators. One exception, carboxy‐peroxides are rapidly decomposed without the production of free radicals. AODS is partially converted to a gel without the consumption of double bonds during monomer dissolution in certain organic solvents and after being mixed in solution with carboxy‐peroxides. The determined AODS‐co‐MMA copolymerization parameters are r1 = 2.61, r2 = 0.23 if Luperco peroxide is used as a polymerization initiator, and r1 = 2.71, r2 = 0.38 if AIBN is used.

  相似文献   


13.
A series of fluoropoly(ether‐imide) (6F‐PEI), and [6F‐PEI/montmorillonite (MMT) clay) nanocomposites films were made by thermal curing of respective formulations containing fluoropoly(ether‐amic acid) (6F‐PEAA), synthesized from 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 4,4′‐bis(4‐aminophenoxy)diphenyl sulfone (p‐SED), and increasing concentration of p‐SED treated montmorillonite clay (modified MMT clay) at temperature from RT to 350 °C. These films showed excellent solvent resistance as well as very good thermal stability, and increased glass transition (Tg) values with increasing % clay. In addition, these trifluoromethyl groups‐containing nanocomposites films showed sharp lowering of coefficient of thermal expansion (CTE) by 22%. Furthermore, they exhibited increased long‐term thermo‐oxidative stability (TOS), with % weight retention in the range of 86 to 92% in isothermal heating at 300 °C for 300 h in air, reduced water absorption at 100 RH at 50 °C in the range of 0.5 to 1.15%. These data are still much lower than those of neat ULTEM® 1000 and Kapton® H film. The modulus of elasticity is on an average 38% higher for the nanocomposite films relative to neat fluoropoly(ether‐imide) (6FDA + p‐SED), and above non‐fluorinated polyimide films. The surface energy measurement by One‐Liquid and Two‐Liquid method showed a comparable trend of decreasing contact angle. For the nanocomposite films having 15% hydrophobic clay, the contact angle decreased by 21 and 20% for DI‐water and formamide, respectively. The surface energy increase was in the range of 8.21–8.54 mJ/m2.

  相似文献   


14.
A microfluidic system was designed, fabricated and implemented to study the behavior of polyelectrolyte capsules flowing in microscale channels. The device contains microchannels that lead into constrictions intended to capture polyelectrolyte microcapsules which were fabricated with the well‐known layer‐by‐layer (LbL) assembly technique. The behavior of hollow capsules at the constrictions was visualized and the properties of the capsules were investigated before and after introduction into the device.

Time series of video frames showing capsules being compressed into a constriction.  相似文献   


15.
An improvement to a previously published suspension polymerization process for the production of spherical core/shell PVAc/PVA particles is described. To increase the settling time of the beads in the suspension, an expansion stage was introduced. The core/shell structure was obtained through the partial hydrolysis of the PVAc. The particle density was manipulated through addition of a solvent during the suspension polymerization stage and posterior expansion of the polymer beads obtained at the end of the process. This technique allows for effective reduction of the density of the final polymer beads. The expansion stage exerts also a beneficial effect on particle drying, avoiding particle aggregation during post‐polymerization processing of the polymer beads.

  相似文献   


16.
Summary: Hydrogels of high‐molecular‐weight poly(ethylene oxide) (PEO) have been obtained in situ by applying a very simple procedure that involves UV cross‐linking of PEO in aqueous solution. The efficiency of the photoactivated cross‐linking of thin layers of PEO in aqueous solution in the presence of (4‐benzoylbenzyl) trimethylammonium chloride as a photoinitiator has been determined at room temperature and in a frozen state (?25 °C). It was found that the efficiency varies with the concentration of PEO solution, the molecular weight of PEO, and especially with the temperature. When the UV cross‐linking was performed in the frozen state, porous hydrogels with very high yield of gel fraction (above 90%) and high cross‐linking density were obtained. After drying the hydrogels, films of 50–150 μm thickness were prepared. The films swell extremely fast in water and act as asymmetric membranes.

SEM of a dried PEO hydrogel obtained by UV cross‐linking of an aqueous solution at room temperature.  相似文献   


17.
Summary: The fracture toughness of EMC was dramatically increased over a wide temperature range by the addition of a very low volume fraction of layered silicates to EMC filled with micro‐silica particles. Layered silicate‐EMC nanocomposites containing intercalated and the exfoliated silicates were fabricated by using o‐cresol and biphenyl type epoxy resins, respectively. It was found that exfoliated silicates were more effective than intercalated silicates at toughening EMC at temperatures above Tg of the epoxy resin. Enhanced fracture toughness of EMC over a wide temperature range, from ambient to 230 °C has been attributed to the presence of layered silicates, which induces macroscopic crack deflection and severe plastic deformation in front of the crack tip.

  相似文献   


18.
An efficient ligand‐free copper‐manganese (Cu‐Mn) spinel oxide‐catalyzed direct tandem C−H oxygenation and N‐arylation of benzylamines has been developed. The method has been utilized for the synthesis of medicinally important 2‐arylquinazolin‐4(3H)‐ones. Salient features of this method include recyclable catalyst, no ligand, excellent product yields, shorter reaction times and a broad substrate scope.

  相似文献   


19.
Summary: An alkyl‐functionalized hyperbranched polymer, HBP(OH)–C16, was synthesized by partial modification with fatty acid of an aromatic‐aliphatic OH‐terminated hyperbranched polyester HBP? OH. This product was used as additive in the cationic photopolymerization of an epoxy resin. The alkyl‐modified polyester takes part in the photopolymerization process thanks to the residual OH groups by means of chain‐transfer reactions. An increase of the epoxy conversion is observed by increasing the amount of the HBP additive in the photocurable resin with a modification of the bulk properties of the final ultraviolet‐cured films. The presence of HBP(OH)–C16 induces an increase in glass transition temperature, thermal stability, and solvent resistance. Moreover the surface properties of the films are modified achieving highly hydrophobic surfaces in the presence of even very low amounts of HBP(OH)–C16.

Structure of HBP–C16.  相似文献   


20.
The crack toughness behaviour of styrene/butadiene block copolymers of triblock and star architectures was investigated using instrumented Charpy impact testing. In order to evaluate adequately the toughness behaviour of the investigated materials, different concepts of elastic‐plastic mechanics (J‐integral and crack‐tip opening displacement, CTOD concepts) were used. Although the lamellar block copolymers showed a remarkably enhanced ductility in the tensile test than the neat block copolymer having hexagonal PB cylinders in PS matrix, no pronounced difference in crack toughness was found. This behaviour implies that the tensile strain cannot be regarded as the only parameter defining the toughness value. A brittle/tough transition was observed in a lamellar star block copolymer on blending with a linear thermoplastic elastomeric SBS triblock copolymer.

SEM micrograph showing the details of the stable crack propagation region in a binary block copolymer blend.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号