首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The dual particle dynamic (DPD) methods which employ two sets of particles have been demonstrated to have better accuracy and stability than the co‐locational particle methods, such as the smooth particle hydrodynamics (SPH). The hybrid particle method (HPM) is an extension of the DPD method. Besides the advantages of the DPD method, the HPM possesses features which better facilitate the simulation of large deformations. This paper presents the continued development of the HPM for the numerical solution of two‐dimensional frictionless contact problems. The interface contact force algorithm which employs a modified kinematic constraints method is used to determine the contact tractions. In this method, both the impenetrability condition and the traction condition are simultaneously enforced. In the original kinematic constraints method, only the former condition is satisfied. A new formulation to find stress derivatives at stress‐free corners by imposing stress‐free boundary conditions is also developed. The results for 1‐D and 2‐D contact problems indicate good accuracy for the contact formulation as well as the corner treatment when compared to analytical solutions and explicit finite element results using the commercial code LS‐DYNA. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an improved generalized particle algorithm (GPA), as well as new boundary and interface algorithms for particle interaction with finite elements and other particles (of different materials). The improved GPA uses a local co‐ordinate system that is aligned with the boundaries and/or interfaces for the determination of the strain rates and forces. This enables the boundary and interface algorithms to be applied in a straightforward manner. It also provides an invariant solution that is independent of the orientation of the global co‐ordinate system. Several examples are presented to illustrate the effects of the various algorithms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The Smooth‐Particle‐Hydrodynamics (SPH) method is derived in a novel manner by means of a Galerkin approximation applied to the Lagrangian equations of continuum mechanics as in the finite‐element method. This derivation is modified to replace the SPH interpolant with the Moving‐Least‐Squares (MLS) interpolant of Lancaster and Saulkaskas, and define a new particle volume which ensures thermodynamic compatibility. A variable‐rank modification of the MLS interpolants which retains their desirable summation properties is introduced to remove the singularities that occur when divergent flow reduces the number of neighbours of a particle to less than the minimum required. A surprise benefit of the Galerkin SPH derivation is a theoretical justification of a common ad hoc technique for variable‐h SPH. The new MLSPH method is conservative if an anti‐symmetric quadrature rule for the stiffness matrix elements can be supplied. In this paper, a simple one‐point collocation rule is used to retain similarity with SPH, leading to a non‐conservative method. Several examples document how MLSPH renders dramatic improvements due to the linear consistency of its gradients on three canonical difficulties of the SPH method: spurious boundary effects, erroneous rates of strain and rotation and tension instability. Two of these examples are non‐linear Lagrangian patch tests with analytic solutions with which MLSPH agrees almost exactly. The examples also show that MLSPH is not absolutely stable if the problems are run to very long times. A linear stability analysis explains both why it is more stable than SPH and not yet absolutely stable and an argument is made that for realistic dynamic problems MLSPH is stable enough. The notion of coherent particles, for which the numerical stability is identical to the physical stability, is introduced. The new method is easily retrofitted into a generic SPH code and some observations on performance are made. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
A new methodology is introduced in the differential quadrature (DQ) analysis of plate problems. The proposed approach is distinct from other DQ methods by employing the multiple boundary conditions in a different manner. For structural and plate problems, the methodology employs the displacement within the domain as the only degree of freedom, whereas along the boundaries the displacements as well as the second derivatives of the displacements with respect to the co‐ordinate variable normal to the boundary in the computational domain are considered as the degrees of freedom for the problem. Employing such a procedure would facilitate the boundary conditions to be implemented exactly and conveniently. In order to demonstrate the capability of the new methodology, all cases of free vibration analysis of rectangular isotropic plates, in which the conventional DQ methods have had some sort of difficulty to arrive at a converged or accurate solution, are carried out. Excellent convergence behaviour and accuracy in comparison with exact results and/or results obtained by other approximate methods were obtained. The analogous DQ formulation for a general rectangular plate is derived and for each individual boundary condition the general format for imposing the given conditions is devised. It must be emphasized that the computational efforts of this new methodology are not more than for the conventional differential quadrature methods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Combining the kernel estimate with the Taylor series expansion is proposed to develop a Corrective Smoothed Particle Method (CSPM). This algorithm resolves the general problem of particle deficiency at boundaries, which is a shortcoming in Standard Smoothed Particle Hydrodynamics (SSPH). In addition, the method’s ability to model derivatives of any order could make it applicable for any time‐dependent boundary value problems. An example of the applications studied in this paper is unsteady heat conduction, which is governed by second‐order derivatives. Numerical results demonstrate that besides the capability of directly imposing boundary conditions, the present method enhances the solution accuracy not only near or on the boundary but also inside the domain. Published in 1999 by John Wiley & Sons, Ltd. This article is a U.S. government work and is in the public domain in the United States.  相似文献   

6.
Three different degenerated shell elements are studied in an adaptive refinement procedure for the solution of shell problems. The stress recovery procedure expressed in a convective patch co‐ordinate system is used for the construction of continuous smoothed stress fields for the a posteriori error estimation. The performance of the stress recovery procedure, the error estimator and the adaptive refinement strategy are tested by solving three benchmark shell problems. It is found that when adaptive refinement is used, the adverse effects of boundary layers and stress singularities are eliminated and all the elements tested are able to achieve their optimal convergence rates. It is also found that the accuracy of the shell elements increases with the number of polynomial terms included in the stress and strain approximations. In addition, if complete Lagrangian polynomial terms are used, the element will be less sensitive to shape distortion than the one in which only complete polynomial terms are employed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Obtaining very high-order accurate solutions in curved domains is a challenging task as the accuracy of discretization methods may dramatically reduce without an appropriate treatment of boundary conditions. The classical techniques to preserve the nominal convergence order of accuracy, proposed in the context of finite element and finite volume methods, rely on curved mesh elements, which fit curved boundaries. Such techniques often demand sophisticated meshing algorithms, cumbersome quadrature rules for integration, and complex nonlinear transformations to map the curved mesh elements onto the reference polygonal ones. In this regard, the reconstruction for off-site data method, proposed in the work of Costa et al, provides very high-order accurate polynomial reconstructions on arbitrary smooth curved boundaries, enabling integration of the governing equations on polygonal mesh elements, and therefore, avoiding the use of complex integration quadrature rules or nonlinear transformations. The method was introduced for Dirichlet boundary conditions and the present article proposes an extension for general boundary conditions, which represents an important advance for real context applications. A generic framework to compute polynomial reconstructions is also developed based on the least-squares method, which handles general constraints and further improves the algorithm. The proposed methods are applied to solve the convection-diffusion equation with a finite volume discretization in unstructured meshes. A comprehensive numerical benchmark test suite is provided to verify and assess the accuracy, convergence orders, robustness, and efficiency, which proves that boundary conditions on arbitrary smooth curved boundaries are properly fulfilled and the nominal very high-order convergence orders are effectively achieved.  相似文献   

8.
This work presents a general and efficient way of computing both diffuse and full derivatives of shape functions for meshless methods based on moving least‐squares approximation (MLS) and interpolation. It is an extension of the recently introduced consistency approach based on Lagrange multipliers which provides a general framework for constrained MLS along with robust algorithms for the computation of shape functions and their diffuse derivatives. The particularity of the proposed algorithms is that they do not involve matrix inversion or linear system solving. The previous approach is limited to diffuse derivatives of the shape functions and not their full derivatives which are usually much more expensive to obtain. In the present paper we propose to efficiently compute the full derivatives by a new algorithm based on the formal differentiation of the previous one. In this way, we obtain a unified low‐cost consistent methodology for evaluating the shape functions and both their diffuse and full derivatives. In the second part of the paper we introduce explicit forms of MLS shape functions in 1D, 2D and 3D for an arbitrary number of nodes. These forms are especially useful for comparing finite element and MLS approximations. Finally we present a general architecture of an MLS program. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
A mixture‐theory‐based model for multi‐constituent solids is presented where each constituent is governed by its own balance laws and constitutive equations. Interactive forces between constituents that emanate from maximization of entropy production inequality provide the coupling between constituent‐specific balance laws and constitutive models. The deformation of multi‐constituent mixtures at the Neumann boundaries requires imposing inter‐constituent coupling constraints such that the constituents deform in a self‐consistent fashion. A set of boundary conditions is presented that accounts for the non‐zero applied tractions, and a variationally consistent method is developed to enforce inter‐constituent constraints at Neumann boundaries in the finite deformation context. The new method finds roots in a local multiscale decomposition of the deformation map at the Neumann boundary. Locally satisfying the Lagrange multiplier field and subsequent modeling of the fine scales via edge bubble functions result in closed‐form expressions for a generalized penalty tensor and a weighted numerical flux that are free from tunable parameters. The key novelty is that the consistently derived constituent coupling parameters evolve with material and geometric nonlinearity, thereby resulting in optimal enforcement of inter‐constituent constraints. Various benchmark problems are presented to validate the method and show its range of application. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We use symmetric smoothed particle hydrodynamics (SSPH) and moving least squares (MLS) basis functions to analyze six linear elastostatics problems by first deriving their Petrov-Galerkin approximations. With SSPH basis functions one can approximate the trial solution and its derivatives by using different basis functions whereas with MLS basis functions the derivatives of the trial solution involve derivatives of the basis functions used to approximate the trial solution. The class of allowable kernel functions for SSPH basis functions includes constant functions which are excluded in MLS basis functions if derivatives of the trial solution are also to be approximated. We compare results for different choices of weight functions, size of the compact support of the weight function, order of complete polynomials, and number of particles in the problem domain. The two basis functions are also used to analyze crack initiation and propagation in plane stress mode-I deformations of a plate made of a linear elastic isotropic and homogeneous material with particular emphasis on the computation of the T-stress. The crack trajectories predicted by using the two basis functions agree well with those found experimentally.  相似文献   

11.
In this paper, consideration is given to how aliasing errors, introduced when evaluating nonlinear products, inexactly affect the solution of Galerkin spectral/hp element polynomial discretisations on triangles. A theoretical discussion is presented of how aliasing errors are introduced by a collocation projection onto a set of quadrature points insufficient for exact integration, and consider interpolation projections to geometrically symmetric ollocation points. The discussion is corroborated by numerica examples that elucidate the key features. The study is first motivated with a review of aliasing errors introduced in one-dimensional spectral-element methods (these results extend naturally to tensor-product quadrilaterals and hexahedra.) Within triangular domains two commonly used expansions are a hierarchical, or modal, expansion based on a rotationally non-symmetric collapsed-coordinate system, and a Lagrange expansion based on a set of rotationally symmetric nodal points. Whilst both expansions span the same polynomial space, the construction of the two bases numerically motivates a different set of collocation points for use in the collocation projection of a nonlinear product. The purpose of this paper is to compare these two collocation projections. The analysis and results show that aliasing errors produced using a collocation projection on the rotationally non-symmetric, collapsed-coordinate system are significantly smaller than those for a collocation projection using the rotationally symmetric nodal points. In the case of the collapsed coordinate projection, if the Gaussian quadrature order employed is less than half the polynomial order of the integrand, then it is possible for the aliasing error to modify the constant mode of the expansion and therefore affect the conservation property of the approximation. However, the use of a collocation projection onto a polynomial expansion associated with a set of rotationally symmetric nodal points within the triangle is always observed to be non-conservative. Nevertheless, the rotationally symmetric collocation will maintain the overall symmetry of the triangular region, which is not typically the case when a collapsed coordinate quadrature projection is used.  相似文献   

12.
A new meshless method based on a regular local integral equation and the moving least‐squares approximation is developed. The present method is a truly meshless one as it does not need a ‘finite element or boundary element mesh’, either for purposes of interpolation of the solution variables, or for the integration of the ‘energy’. All integrals can be easily evaluated over regularly shaped domains (in general, spheres in three‐dimensional problems) and their boundaries. No derivatives of the shape functions are needed in constructing the system stiffness matrix for the internal nodes, as well as for those boundary nodes with no essential‐boundary‐condition‐prescribed sections on their local boundaries. Numerical examples presented in the paper show that high rates of convergence with mesh refinement are achievable, and the computational results for the unknown variable and its derivatives are very accurate. No special post‐processing procedure is required to compute the derivatives of the unknown variable, as the original result, from the moving least‐squares approximation, is smooth enough. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
14.
An investigation on the effects of boundary constraints on the vibratory characteristics of symmetrically laminated rectangular plates is carried out. The research findings are reported in a two-part paper. Vibration frequency parameters and mode shapes for symmetric laminates with classical boundary conditions are reported in Part I and elastically restrained boundaries in Part II. The analysis is performed based on the use of admissible beam characteristics orthonormal polynomial functions in the Rayleigh-Ritz method to derive the governing eigenvalue equation. In this paper, several examples for laminates with different combinations of free, simply supported and clamped edges are solved to demonstrate the accuracy and flexibility of the present method. Discussion on the effects of boundary conditions, fiber orientations and stacking sequences on the vibrational response is included.  相似文献   

15.
In this paper, a novel hybrid finite difference and moving least square (MLS) technique is presented for the two-dimensional elasticity problems. A new approach for an indirect evaluation of second order and higher order derivatives of the MLS shape functions at field points is developed. As derivatives are obtained from a local approximation, the proposed method is computationally economical and efficient. The classical central finite difference formulas are used at domain collocation points with finite difference grids for regular boundaries and boundary conditions are represented using a moving least square approximation. For irregular shape problems, a point collocation method (PCM) is applied at points that are close to irregular boundaries. Neither the connectivity of mesh in the domain/boundary or integrations with fundamental/particular solutions is required in this approach. The application of the hybrid method to two-dimensional elastostatic and elastodynamic problems is presented and comparisons are made with the boundary element method and analytical solutions.  相似文献   

16.
Two-dimensional finite element (FE) simulations of the deformation and damage evolution of Silicon–Carbide (SiC) particle reinforced aluminum alloy composite including interphase are carried out for different microstructures and particle volume fractions of the composites. A program is developed for the automatic generation of 2D micromechanical FE-models with randomly distributed SiC particles. In order to simulate the damage process in aluminum alloy matrix and SiC particles, a damage parameter based on the stress triaxial indicator and the maximum principal stress criterion based elastic brittle damage model are developed within Abaqus/Standard Subroutine USDFLD, respectively. An Abaqus/Standard Subroutine MPC, which allows defining multi-point constraints, is developed to realize the symmetric boundary condition (SBC) and periodic boundary condition (PBC). A series of computational experiments are performed to study the influence of boundary condition, particle number and volume fraction of the representative volume element (RVE) on composite stiffness and strength properties.  相似文献   

17.
A symmetric Galerkin formulation and implementation for heat conduction in a three‐dimensional functionally graded material is presented. The Green's function of the graded problem, in which the thermal conductivity varies exponentially in one co‐ordinate, is used to develop a boundary‐only formulation without any domain discretization. The main task is the evaluation of hypersingular and singular integrals, which is carried out using a direct ‘limit to the boundary’ approach. However, due to complexity of the Green's function for graded materials, the usual direct limit procedures have to be modified, incorporating Taylor expansions to obtain expressions that can be integrated analytically. Several test examples are provided to verify the numerical implementation. The results of test calculations are in good agreement with exact solutions and corresponding finite element method simulations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Previous work by the author has shown that the consistency of the SPH method can be improved to acceptable levels by substituting MLS interpolants for SPH interpolants, that the SPH inconsistency drives the tension instability and that imposition of consistency via MLS severely retards tension instability growth. The new method however was not conservative, and made no provision for boundary conditions. Conservation is an essential property in simulations where large localized mass, momentum or energy transfer occurs such as high‐velocity impact or explosion modeling. A new locally conservative MLS variant of SPH that naturally incorporates realistic boundary conditions is described. In order to provide for the boundary fluxes one must identify the boundary particles. A new, purely geometric boundary detection technique for assemblies of spherical particles is described. A comparison with SPH on a ball‐and‐plate impact simulation shows qualitative improvement. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
We obtain a new representation for derivatives and anti‐derivatives of any order of the displacement and stress fields for elastostatics problems when the boundary data is given in terms of polynomials of arbitrary degree. The result includes, as a special case, Somigliana's theorem. Based on this identity, we propose an alternative algorithm for the boundary element method that uses polynomial approximations of arbitrary order. The method provides accurate results for two‐dimensional elastostatics boundary value problems and has the advantage that it is easy to implement. The formula can also be used to accurately compute stresses and strains. For domains bounded by polygons, we provide closed‐form analytical expressions for the terms that appear in the stiffness matrix and the load vector for polynomials of arbitrary degree, thus avoiding numerical integration. We analyse the accuracy of the numerical solution as a function of the degree of the polynomial approximation by solving a representative boundary value problem. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
A small strain, three‐dimensional, elastic and elastoplastic Element‐Free Galerkin (EFG) formulation is developed. Singular weight functions are utilized in the Moving‐Least‐Squares (MLS) determination of shape functions and shape function derivatives allowing accurate, direct nodal imposition of essential boundary conditions. A variable domain of influence EFG method is introduced leading to increased efficiency in computing the MLS shape functions and their derivatives. The elastoplastic formulations are based on the consistent tangent operator approach and closely follow the incremental formulations for non‐linear analysis using finite elements. Several linear elastic and small strain elastoplastic numerical examples are presented to verify the accuracy of the numerical formulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号