首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
为了研究铸态P91耐热合金钢的高温变形流变特性,建立铸态P91耐热合金钢高温流变应力本构方程,采用Gleeble-3500热模拟实验机对铸态P91耐热合金钢进行等温热压缩实验,研究了变形温度为900~1200℃、应变速率为0.01~5 s-1、变形量为60%条件下的热变形行为。研究结果表明,随着变形温度的升高和应变速率的降低,动态再结晶现象越容易发生,流变应力显著降低,曲线由加工硬化型向动态回复及动态再结晶型转变。在双曲正弦修正的Arrhenius型方程及Zener-Hollomon参数的基础上,考虑真应变对流动应力的影响,建立了铸态P91耐热合金钢的流变应力模型及本构方程。误差分析表明,所建立的本构方程具有良好的精度。  相似文献   

2.
用Gleeble-1500热模拟试验机研究了Cr8钢在温度为900~1200℃、应变速率为0.005~1 s~(-1)的热变形行为。得到了该材料的真应力应变曲线,基于双曲正弦关系建立了Cr8钢的本构方程,并对本构方程进行验证。结果表明:在变形温度为900~1200℃,应变速率为0.005~0.1 s~(-1)时,Cr8钢发生了明显的动态再结晶现象;所建模型预测的峰值应力与试验所得峰值应力的绝对值误差不超过7%,验证了所建本构方程的准确性;计算得出Cr8钢变形激活能为254.215 k J/mol。  相似文献   

3.
针对较高Mn含量会导致中锰钢成本提高、出现偏析而限制其应用的问题,设计了一种能够满足1 000 MPa级别性能要求(抗拉强度Rm>1 000 MPa,总伸长率A>30%)的中锰钢,其成分为Fe-4Mn-1.5Al-0.5Si-0.2C-0.05Nb。通过绘制实验钢在不同应变速率和变形温度下的真应力-真应变曲线,并结合组织观察,研究了实验钢的热变形行为,尤其是应变速率和变形温度对实验钢热变形行为的影响规律,并最终获得了实验钢的动态再结晶图和本构方程。结果表明:变形温度的降低和应变速率的提高均会抑制动态再结晶的发生;低应变速率(0.1 s-1)下的所有样品均会发生完全动态再结晶;中应变速率(1 s-1)下,变形温度为800℃的样品只发生部分动态再结晶;高应变速率(10 s-1)下,不发生完全动态再结晶的变形温度扩大至800~950℃;实验钢的本构方程为■。动态再结晶图和本构方程的确定对实际生产中轧制工艺的设计、得到具备优良性能的特定类型的微观组织具有重要意义。  相似文献   

4.
利用Gleeble-3500热模拟试验机,研究了含铌低合金高强钢在900-1100℃,应变速率为0.1、1和5 s^-1,真应变至0.7的热压缩变形行为。基于实验数据,得到材料本构方程和表征动态再结晶的参数。运用Cingara-Mc Queen方程建模预测流变应力并验证。结果表明,高温低应变速率条件下动态再结晶是材料主要软化机理,峰值应力与Z参数成线性关系。由热加工图得到,当应变速率在0.1-0.67 s^-1,温度在1030-1100℃范围内材料加工性能良好。  相似文献   

5.
利用Gleeble-3500热模拟试验机,研究了含铌低合金高强钢在900~1100℃,应变速率为0.1、1和5 s-1,真应变至0.7的热压缩变形行为。基于实验数据,得到材料本构方程和表征动态再结晶的参数。运用Cingara-Mc Queen方程建模预测流变应力并验证。结果表明,高温低应变速率条件下动态再结晶是材料主要软化机理,峰值应力与Z参数成线性关系。由热加工图得到,当应变速率在0.1~0.67 s-1,温度在1030~1100℃范围内材料加工性能良好。  相似文献   

6.
利用Gleeble-3800热模拟试验机,研究了GCr15轴承钢在变形温度800~1200℃、应变速率0.01~10 s-1、真应变0.7条件下的热变形行为,建立了其基于峰值应力的本构方程,分析了不同应变量的热加工图,并建立了再结晶区域图。结果表明:变形温度越高,应变速率越小,流变应力越低,材料越容易发生动态再结晶;确定了其在真应变0.6及0.7时的安全区与失稳区,并得到了试验钢发生部分动态再结晶的热变形工艺参数。  相似文献   

7.
张楚博  米振莉  毛小玲  徐梅 《轧钢》2018,35(1):17-22
采用Gleeble-3500热模拟试验机对超高强DP980钢进行热压缩试验,研究其在变形温度为900~1 200℃、应变速率为0.05~30s~(-1)条件下的动态再结晶行为,分析了变形温度和应变速率对真应力-真应变曲线的影响。结果表明:超高强DP980钢在变形过程中,存在动态再结晶和动态回复两种软化机制,且随着温度的升高和应变速率的降低,临界应变越小,动态再结晶越容易发生;同时,得到了发生动态再结晶时的形变激活能,建立了峰值应变模型、动态再结晶临界应力模型和动态再结晶动力学模型。  相似文献   

8.
陈林  郭长海  胡盛  汪洋 《热加工工艺》2014,(12):110-112,116
利用Gleeble-1500D热模拟试验机对抽油杆钢20CrMo连铸坯在变形温度900~1100℃、应变速率0.0015~0.015 s-1的条件下进行热压缩试验,研究了20CrMo连铸坯高温变形时的动态再结晶行为。计算得出了动态再结晶的变形激活能和再结晶开始时间,建立了Johnson-Mehl-Avrami型动力学方程。  相似文献   

9.
利用Gleeble-1500D热模拟试验机对Cu-1.0%Zr-0.15%Y合金进行等温热压缩实验。分析了合金变形温度为550~900℃,应变速率为0.001~10 s~(-1)条件下的真应力-真应变特征、热压缩过程中的组织演变和热变形机制。结果表明:在550~750℃时具有典型的动态回复特征,在850~900℃时具有动态再结晶热变形特征。变形温度和应变速率对Cu-1.0%Zr-0.15%Y合金有显著影响。在真应力-真应变曲线的基础上,建立等温压缩变形过程中的流变应力与应变速率和变形温度之间的本构方程,得到合金的热变形激活能Q为379.16 kJ/mol,与纯铜相比,高Zr含量Cu-1.0%Zr-0.15%Y合金热变形激活能提高了81%。添加稀土元素Y,可以细化Cu-Zr合金晶粒,促进动态结晶。  相似文献   

10.
采用Gleeble-3500型热模拟试验机对高铁螺纹道钉钢TD16进行热压缩变形实验,探索该材料在不同温度和应变速率条件下的热塑性变形行为。研究温度与应变速率对真应力-真应变曲线的影响规律,结合显微组织分析,阐明真应力-真应变曲线发生变化的原因。结果表明,在低应变速率下,流变应力峰值较明显,具有明显的动态再结晶特征。在较高应变速率下,峰值应力不明显,流变应力曲线属于动态回复型,未发生动态再结晶。通过回归分析,建立高铁螺纹道钉钢TD16在实验条件范围内的峰值流变应力本构关系的数学模型。所建立的流变应力本构方程与实验值吻合较好,最大相对误差为7.03%,可以用该本构方程来预测高铁螺纹道钉钢TD16的高温流变行为。  相似文献   

11.
为了研究中碳含钒微合金非调质钢的热变形行为,在变形温度900~1100℃C和应变速率0.01~10 s~(-1)下通过Gleeble-3500热模拟试验机进行了单道次热压缩试验。结果表明:试验钢因热变形而产生加工硬化,使应力得到提升,应力会随着应变速率的提高和热加工温度的降低而有明显的提升,峰值应力随之升高;通过计算得到试验钢的热变形激活能为285.242kJ/mol,并由此得到了试验钢的本构方程;热压缩过程中试验钢发生了动态再结晶,当发生完全动态再结晶时,应变速率较低和温度较高的试样其晶粒尺寸要比应变速率高和温度较低的试样的晶粒尺寸大。  相似文献   

12.
采用Gleeble-1500D热模拟试验机,在变形温度为900~1250℃、应变速率为0.001~1 s^-1的条件下对铸态ER8车轮钢进行热压缩试验,得到真应力-真应变曲线。结果发现:其真应力-真应变曲线符合动态再结晶型软化机制,变形初始阶段,材料发生硬化,真应力快速增加,随着变形的继续,材料发生动态回复,加工硬化速率减缓;在材料变形过程中,材料畸变的应变储存能增加,动态再结晶激活,真应力迅速降低,后硬化及软化达到动态平衡。并分析了变形温度和应变速率对该材料高温下真应力的影响,发现真应力的大小随着变形温度的升高及应变速率的降低而减小。通过对试验数据的归纳整理得出,铸态ER8车轮钢的热变形激活能为258.4 k J·mol^-1。建立了Arrhenius双曲正弦本构方程,用作图法求解加工硬化速率,找出峰值应变及临界应变,基于此建立动态再结晶体积分数模型。其能精准地预测此材料的高温软化行为,为有限元数值模拟提供了理论基础。  相似文献   

13.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

14.
利用MMS-300型热力模拟试验机对含硼钒微合金钢及不含硼的钒微合金钢在900~1100 ℃变形温度及0.1~10 s-1应变速率条件下进行了单道次热压缩试验,测定了其真应力-真应变曲线,研究了变形温度和应变速率及加入微量硼对试验钢的动态再结晶行为的影响,并采用回归分析法确定了两种试验钢的热变形激活能,建立了试验钢的热变形方程,得出了热变形过程中峰值应变与Z参数之间的关系。结果表明,含硼及不含硼试验钢在0.01、0.1 s-1的低应变速率和900~1100 ℃的变形温度下均发生动态再结晶,两种试验钢的激活能分别为284.9、287.7 kJ/mol,峰值应变与Z参数之间呈线性关系;加入微量硼后,使钒微合金钢动态再结晶激活能和峰值应力稍微降低,对动态再结晶有所促进。  相似文献   

15.
采用Gleeble-3800热模拟压缩试验机对热等静压态FGH96合金进行了不同温度和应变速率的等温热压缩试验,研究了FGH96合金在变形温度分别为1040、1070、1100、1130 ℃,应变速率为0.001、0.01、0.1和1 s-1,最大真应变为0.7条件下的高温热变形行为,分析了真应力-真应变曲线,建立了本构方程,并利用Origin软件构建了热加工图,结合变形温度和应变速率对组织的影响确定了FGH96合金合适的热加工参数。结果表明,热等静压态FGH96合金的真应力-真应变曲线呈现典型的动态再结晶特征,其峰值应力随变形温度的降低和应变速率的增加而增加,结合本构方程、热加工图以及微观组织确定了FGH96合金合适的热加工区域为变形温度1060~1080 ℃,应变速率0.0001~0.004 s-1。  相似文献   

16.
采用Gleeble-3800热模拟试验机研究了N08811耐热合金在变形温度为900~1150℃、变形速率为0.1~5 s-1条件下的高温变形行为。结果表明,N08811合金的流变应力随着应变速率的增大及变形温度的下降而增加,是一种正应变速率敏感材料。通过对显微组织的研究,发现当应变速率为1 s-1时,N08811合金优先在变形晶粒的晶界处发生动态再结晶,再结晶晶粒数目及尺寸均随变形温度的升高而增加,至变形温度为1150℃时已发生完全再结晶。当变形温度一定时,高应变速率会降低N08811合金的再结晶温度,增加晶粒尺寸。依据真应力-真应变曲线,采用双曲正弦本构模型建立了N08811合金的流变应力本构方程,得到其热变形激活能为509.998 kJ·mol-1。  相似文献   

17.
300M钢的热变形行为及其变形组织演变研究   总被引:1,自引:0,他引:1  
基于热压缩实验,对300M钢在应变速率为10s-1下的热变形行为及其变形组织演变进行了研究。结果表明:在试样高度压下量为50%,变形温度为700~750℃时,300M钢的应力-应变曲线呈流变失稳型,且变形组织出现绝热剪切;当变形温度为800~1000℃时,300M钢的应力-应变曲线呈双峰不连续动态再结晶型,且热变形过程出现了两轮动态再结晶;当变形温度为1050~1180℃时,300M钢的应力-应变曲线呈单峰不连续动态再结晶型,且热变形过程只发生了一轮动态再结晶。  相似文献   

18.
采用Gleeble-1500型热模拟机对微合金化高强钢在变形温度为900~1100℃、应变速率为0.01~30 s^(-1)的条件下进行热压缩实验,得到流变应力曲线。分析高强钢的动态再结晶行为,分别采用综合考虑杨氏模量E和奥氏体自扩散系数D对绝对温度依赖性的、包含可变应力指数n的物理本构方程和蠕变应力指数为5的物理本构方程,建立实验钢应变补偿的流变应力预测模型。结果表明:随着变形温度的升高和应变速率的降低,动态再结晶更易于发生。利用应变补偿的物理本构方程预测流变应力的精度较高,其中,包含可变应力指数n的物理本构方程的预测精度(相关系数R=0.991,平均相对误差δ=4.81%)高于蠕变应力指数为5的物理本构方程(相关系数R=0.989,平均相对误差δ=6.49%)。这是由于:当物理本构方程中的蠕变应力指数为5时,材料的变形机制仅有滑移和攀移,而包含可变应力指数n的物理本构方程综合考虑了所有的变形机制,预测精度更高。  相似文献   

19.
任树兰  刘建生  李景丹  王瑞  段兴旺 《锻压技术》2017,(10):162-165,169
为了研究铸态316LN钢ESR材料的高温变形行为,建立铸态316LN钢ESR材料高温塑性本构方程,采用Gleeble-1500D热模拟试验机对316LN钢进行等温压缩试验,研究了316LN钢ESR材料在变形温度为900~1200℃、应变速率为0.001~1 s~(-1)、最大变形量为55%条件下热变形行为,并测得相应的流动应力-应变曲线。结果表明,在高变形温度、低应变速率的条件下,更有利于动态再结晶的发生。通过对试验数据进行多元线性拟合计算,得到了316LN钢的热变形激活能,建立了316LN钢ESR材料的高温塑性本构方程。  相似文献   

20.
通过Gleeble-3500热机械模拟机研究了Fe-0.1C-5Mn中锰钢在950~1 150℃变形温度、0.001~1 s-1应变速率下的高温变形行为。根据单道次热压缩的真应力-真应变曲线,分析了变形条件对流变应力的影响,发现高温和低应变速率有利于动态再结晶的发生。引入Zener-Hollomon参数,建立本构方程,得到钢的热变形激活能为256.317 kJ/mol。通过对试验数据的拟合,建立了中锰钢动态回复和动态再结晶的分段流变应力模型,结果表明:模型预测值与试验值吻合较好,证明了所建模型的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号