首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
周边Mura在TN型TFT-LCD(Thin film transistor-liquid crystal display)生产中较为常见的一种不良,对画面品质影响较大,文章结合实际生产情况对周边Mura发生的原因进行理论分析和实验验证,周边Mura为光学性不良,通过调整Rubbing强度或者是增加Rubbing Cloth的恢复力等手法验证改善。最终实验得出在实际生产过程中调整Rubbing Cloth厚度和Aging时间,不良率降低80%以上,提高了产品品质。  相似文献   

2.
Rubbing Mura是以接触式摩擦工艺生产TFT_LCD产品时常见的顽固缺陷,尤其在HADS产品上不良发生率更高。本文对Rubbing Mura产生的原因及机理进行分析,发现该不良由TFT基板上的源极线(Source Data,SD)附近的Rubbing弱区漏光引起。研究了Rubbing强度(Nip值)、Rubbing布型号、Rubbing布寿命、黑矩阵(Black Matrix,BM)加宽和SD减薄对HADS产品的Rubbing Mura的影响,选择最优的工艺条件,Rubbing Mura的不良发生率由2.4%降至0%,改善效果明显。  相似文献   

3.
在新产品导入过程中会突发各种Mura类不良。本文为解决TV机种导入中出现的一种原因未知的角落白Mura,首先进行了大量的排查和推理,初步判定异常来源于成盒工艺(Cell)段,利用气相色谱(GC)、高效液相色谱(HPLC)设备测试并对比了角落白Mura区域与正常区域的液晶纯度、液晶组份和框胶溶出的差异,最后探讨了其形成的机理。结果表明角落白Mura区域液晶组份发生较大变动,液晶组份挥发是角落白Mura产生的主因。通过优化贴合时的真空抽气时间、真空保持时间、液晶滴下点数、液晶与边框胶距离等一系列的改善措施,使产品的角落白Mura发生率从16.59%降到了0.001%以下管控范围。实验有效解决了角落白Mura异常并为今后类似Mura类不良的对策提供了思路,同时提升了公司的效益和竞争力。  相似文献   

4.
高PPI产品下的取向膜画面品质改善研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了实现TFT LCD高PPI产品的高分辨率,高开口率,低功耗全面提升,分析了不同因素的影响程度,加强了对取向膜印刷品质的管控。同时对涉及该过程相关因素进行研究分析。对取向膜画面品质相关的产线印刷和干燥条件、APR版制作工艺、取向膜膜厚变化、APR版线数开口率进行优化测试,找到了可以提高取向膜画面品质的方法。实验结果表明:通过对取向膜印刷和干燥条件优化,确定了TN产品画面品质提升的产线管控方案;在APR版制作过程中引用扩散保护膜,ADS产品Particle类不良降低2%,Scratch类不良降低1%;对取向膜膜厚提升,ADS产品的段差和残像得到改善,对比度提升30~120,Zara Particle不良降低30%;通过对APR版的网点,开口率优化:400L,30%,普通曝光的APR版更新为600L,20%,高PPI有机膜类产品的Sand Mura发生率降低为0%。可以满足高PPI产品对取向膜印刷稳定的管控要求,适应高分辨率、高开口率、低功耗等要求。  相似文献   

5.
摩擦Mura是ADS型TFT-LCD中一种常见不良,本文主要对摩擦过程中固定位置的Mura进行理论研究和实验测试。摩擦Mura产生原因是TFT基板上的源极线附近的摩擦弱区漏光。从产品设计方面找出影响这种固定位置的摩擦Mura的主要因子为ITO材质、段差、过孔密度。ITO材质为金属材质,摩擦时对摩擦布损伤较大,摩擦方向上ITO越长对摩擦布损伤越大,摩擦Mura越明显。设计时需要尽力保证摩擦方向上ITO长度一致。段差会导致摩擦布经过高低不同区域时产生损伤,设计时需要尽力保证摩擦方向上段差一致。过孔是密度影响,孔径直径(5μm)摩擦布毛直径(11μm),密度越小则摩擦Mura越轻。以15.0FHD产品为例,对周边电路设计位置ITO材质/源极线/过孔密度等膜层进行设计优化,摩擦Mura发生率从5%降至0%,改善效果明显。  相似文献   

6.
色斑不良(Mura)是薄膜晶体管液晶显示器常见的显示缺陷,严重影响产品品质。色斑不良表现形式多样,原因也各不相同。本文针对8.5世代线发生于81.28cm(32in)产品上的一种固定位置发绿条状Mura,通过实物解析、设备排查和不同工艺条件试验,对不良机理进行研究。实验结果表明,81.28cm(32in)产品彩膜绿像素使用的G-1型光刻胶受光照后性质发生变化是导致该不良的直接原因。进一步确认不良的根本原因为G-1型光刻胶中颜料分子锌酞菁化合物在600~700nm光波处存在吸收峰,被光照后吸收光子生成自由载流子,形成附加电场,导致该区域液晶偏转异常,显示出宏观绿Mura。从阻隔光照和减少光生载流子产生数量两个方向入手,通过添加高敏感度光起始剂和使用颜色浓度更高的颜料分子,形成两种改善材料,量产导入后,均成功将不良发生率由约20%降低为0,有效提升了产品品质。  相似文献   

7.
生产中经常出现常温污渍(Array Mura)不良。针对TFT面板布线细线化及低电阻电极的要求,纯铝工艺迫切需要新型湿法刻蚀液的对应。目前,本文通过对比3种产线中测试的刻蚀液,得出Array Mura的产生主要与纯铝工艺的顶层金属钼的刻蚀后缩进有关,其中测试的刻蚀液C可以有效控制金属钼的缩进至0.1μm以内。控制顶层金属钼缩进的主要原因与刻蚀液C的硝酸浓度和添加剂含量有关,通过控制药液进而控制了刻蚀过程内的电化学反应,最终使得Array Mura得到了有效的改善,后续无相关不良发生。采用刻蚀液C刻蚀后线宽、坡度角等相关刻蚀参数均满足要求,目前已经导入量产使用。  相似文献   

8.
雷秀娟  黄旭  吴爽  郭玲 《电子学报》2012,40(4):695-702
 由于PPI网络数据的无尺度和小世界特性,使得目前对此类数据的聚类算法效果不理想.根据PPI网络的拓扑结构特性,本文提出了一种基于连接强度的蚁群优化(Joint Strength based Ant Colony Optimization,JSACO)聚类算法,该算法引入了连接强度的概念对蚁群聚类算法中的拾起/放下规则加以改进,以连接强度作为拾起规则,对结点进行聚类,并根据放下规则放弃部分不良数据,产生最终聚类结果.最后采用了MIPS数据库中的PPI数据进行实验,将JSACO算法与PPI网络数据的其他聚类算法进行比较,聚类结果表明JSACO算法正确率高,时间开销低.  相似文献   

9.
为提高产能,笔记本电脑超高级超维场开关(HADS)产品的聚酰亚胺(PI)膜涂布方式从辊涂的感光树脂转印版(APR版)转印变更为喷墨打印,涂布方式的变更造成了PI液滴无法填充到高段差钝化层(PVX)过孔内,进而在过孔周围PI液堆积产生宏观"线Mura"不良。我们通过变更产品设计与工艺参数调整以及工艺过程优化,设法降低或消除不良产品,使良率满足量产需求。首先,通过变更钝化层掩膜版使得钝化层过孔和Com走线有一定偏移量(钝化层半过孔),半过孔设计利于PI液通过半过孔缺口设计进入钝化层过孔内。为了减小钝化层过孔尺寸和数量对PI液扩散的不利影响,钝化层过孔周期从1/3变更为1/6,过孔尺寸从5.7μm增大到7.5μm。钝化层掩膜版设计的变更极大改善了PI液进入过孔内,将"线Mura"不良率从100%降为15%。其次,从提高PI液滴涂布均匀性方向出发,将喷墨打印涂布方式从1次涂布变更为2次涂布,2次涂布的叠加效果使相邻液滴间扩散时间更久,液滴间距更小,膜厚更均匀,使"线Mura"不良率从15%降为1%。再次,通过改变PI液滴在过孔周围走线的扩散方向来提高扩散均匀性,通过将喷墨打印机台角度从0°变为2°,进一步使"线Mura"不良率从1%降为0.2%。  相似文献   

10.
半导体IC清洗技术由于水溶液的表面张力大而无法进入硅片上器件的狭缝与电路线条间隙中进行清洗,同时不易干燥,且干燥时会造成二次污染,从而使得整个工艺耗水量大且清洗效果不佳.以超临界流体为媒体的清洗技术是克服以上缺点的最佳途径.提出并研制了一种绿色二氧化碳超临界清洗设备,它利用超流体二氧化碳来进行硅片的清洗和无张力的超临界干燥,而且该设备还可以对微细结构进行无粘连的牺牲层释放.设备的成本低,二氧化碳使用量少,并且可以循环使用,属于绿色无污染的新型半导体清洗设备.  相似文献   

11.
Zara漏光和Rubbing Mura改善研究   总被引:5,自引:5,他引:0  
研究了摩擦强度对Zara漏光和摩擦痕Mura的影响。实验表明,当摩擦强度偏低时,Zara漏光易发生,而摩擦强度偏高时,则易引发摩擦痕Mura。通过选择合适的摩擦强度,可降低Zara漏光和摩擦痕Mura的发生率。另外,利用FIB对基板表面进行分析,找到了FFS型产品容易发生Zara漏光和摩擦痕Mura的原因。  相似文献   

12.
顾小祥  杨丽  曾龙 《液晶与显示》2019,34(2):160-168
LC配向的均一性在LCD中是必不可少的,光配向制程是通过施加紫外偏振光照射在IPS(In-Plane Switch)LCD中形成液晶配向沟槽的一种技术,然而紫外光照射的同时会损伤TFT器件,使非晶硅层产生光生载流子,电子发生迁移,导致TFT漏电流从而影响图像品质,产生横纹色差。在低频时,栅极开关时间延长,相邻扫描线之间容易发生混充电现象,部分充电截止的像素重新充电,从而使横纹色差变严重。本文从制程和电性调整方面对低频横纹色差进行了研究,结果表明:(1)紫外光照射后进行烘烤,可以有效降低漏电流,高温度(240℃)+长时间(4 200s)改善低频横纹色差效果佳(比例:0.00%);(2)延长Out Enable(4.8μs)+降低V_(gh)(18V)+提高GOA(Gate On Array)电路中电压V_(SS_Q)(-7.5V),改善低频横纹色差效果佳(比例:0.00%)。  相似文献   

13.
手指滑动ADS(Advanced Super Dimension Switch)液晶面板的L255画面时,由于按压导致的液晶分子形变和电场作用,滑动位置亮度会降低,表现为留下发暗的按压的痕迹。如果该痕迹在按压5 s后不能恢复,我们称之为划痕Mura(Trace Mura)。本文通过对比5种不同像素设计的液晶面板的滑动按压实验的结果,得到了像素电极设计、驱动电压对Trace Mura的影响;进一步模拟分析液晶分子状态,得到判断不同像素设计的Trace Mura风险的模拟方法。主要结论如下首先,像素电极尾部设计对于Trace Mura改善方面,弧角设计优于切角设计,切角设计优于开口设计;像素电极间距(Space)越小,Trace Mura风险越小。其次,Trace Mura需要在高灰阶电压下按压划动液晶面板才能发生;而发生Trace Mura的液晶面板,可以通过降低液晶面板的电压灰阶来消除按压痕迹。最后,对比液晶分子状态模拟结果,确认在电极末端的液晶分子方位角会发生突变(即向相反方向偏转),模拟的突变角度在-15°以上,预测有Trace Mura风险。  相似文献   

14.
Panel污渍是TFT-LCD生产中一种常见的不良,它直接影响到产品的画面品质和出售价格,降低产品竞争力。本文通过研究发现大量panel污渍是摩擦产生的含Si元素杂质导致。实验表明:降低制品膜面的粗糙度,使杂质更易去除;通过提升摩擦后的清洗能力,也能有效去除杂质,一定程度降低了panel污渍发生率;而最后通过导入C系列摩擦布,使摩擦过程中产生极少杂质。通过导入以上3种改善措施,最终将55UHD产品的panel污渍发生率从8.2%降至0.2%。  相似文献   

15.
未确认Mura分析及改善对策   总被引:3,自引:3,他引:0  
未确认Mura是一种能够影响TFT-LCD画面品质的不良。文章对未确认Mura不良进行了详细的分析,认为扇形区域出现有源层残留是导致未确认Mura不良发生的原因,介绍了一种通过变更曝光工艺条件来解决此种不良的方法,并通过试验论证了此方法的量产可行性。  相似文献   

16.
在大世代线液晶面板厂,因产品切换便捷、产能高等优势,配向膜材料涂布多采用喷墨印刷方式。但随着高分辨率、无边框等技术升级,喷墨印刷方式面临的挑战也随之增加,产生了很多新的配向膜不良。本文研究了一种周边配向膜Mura,分析原因为阵列基板上的配向膜固化时,在基板周边过孔处出现堆积,造成周边显示区配向膜厚不均匀,导致显示区边缘形成暗线不良。文章从配向膜边界位置、预固化温度、预固化环境气压和配向膜膜厚4个方面进行分析实验,证明了外扩配向膜边界、降低预固化温度、降低预固化环境气压和降低配向膜膜厚,可以有效减轻配向膜在周边过孔处堆积,进而成功解决此不良,获得优异的显示品质。  相似文献   

17.
针对手机屏幕图像整体亮度不均以及Mura缺陷对比度低等特点,提出一种基于自适应局部增强的Mura缺陷自动在线检测方法。首先对CCD相机采集的手机屏幕原始图像进行感兴趣区域提取、几何校正、滤波等预处理,获取图像中的屏幕区域,然后将屏幕区域划分为多个不重叠的像素块,并根据每个像素块的灰度分布特征,采用自适应局部增强算法自动识别并定位图像中的Mura区域,最后考虑到Mura缺陷大小的不确定,提出采用多层级分块的方式对屏幕区域进行检测,提高算法鲁棒性。实验结果表明,相较现有多种屏幕缺陷自动检测算法,本文方法能更准确有效地识别手机屏幕中的Mura缺陷,且覆盖率和误检率分别为91.17%和5.84%。  相似文献   

18.
液晶显示器Mura缺陷及测量方法浅析   总被引:2,自引:0,他引:2  
Mura缺陷是液晶显示器(LCD)中常见的不良现象,直接影响到显示图像质量.本文对液晶显示器Mura缺陷进行了详细的综述,首先概述了Mura缺陷的种类及主要来源,然后介绍了Mura缺陷的三类测量方法:人工视觉识别法、电学测量法、光学测量法.人工视觉识别法利用滤光片观察样品,成本较低,但无法做到客观的评定产品等级;电学测量法适用于电气缺陷造成的Mura;基于机器视觉的光学测量法是当前研究的热点,对于各种原因造成的Mura缺陷均具有良好的检测效果.详细分析了各种检测方法的特点,最后进行归纳总结.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号