首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: An organic‐inorganic hybrid material consisting of a 3‐(methacryloxy)propyl functionalized SiO2/MgO framework was synthesized. This hybrid was successfully reacted with styrene, butyl acrylate and butyl methacrylate via a free radical emulsion polymerization to form polymer composites. The polymer composites were investigated by means of FT‐IR spectroscopy, TGA, DSC and rheometry. It is shown that the polymer is linked covalently to the organic/inorganic hybrid. Although the polymer content is rather low, the composites exhibit a polymer‐like character and enhanced mechanical properties compared to the corresponding homopolymers.

  相似文献   


2.
A new carboxylated styrene‐butadiene rubber (CSBR) in ultrafine powder form was used to modify the properties of nylon 6. The nylon 6/CSBR blends possessed higher toughness than nylon 6/maleic anhydride‐grafted polyethylene‐octene elastomer (POE‐g‐MAH) system. TEM micrographs revealed the fine dispersion of CSBR particles with a diameter of 150 nm. The effective toughening of nylon 6 with CSBR was attributed to the good interface, fine dispersion, and shear yielding.

TEM photograph of undeformed Nylon 6/CSBR (80/20) blend (×40 000).  相似文献   


3.
Summary: The mechanisms involved in rubber reinforcement are discussed. A better molecular understanding of these mechanisms can be obtained by combining characterization of the mechanical behavior with an analysis of the chain segmental orientation accompanying deformation. While the strain dependence of the stress is the most common quantity used to assess the effect of filler addition, experimental determination of segmental orientation can be used to quantify the interfacial interactions between the elastomeric matrix and the mineral inclusions.

SEM micrograph of natural rubber containing 10 wt.‐% of organomodified clay.  相似文献   


4.
Summary: Flexible heaters were prepared by extruding platinum‐catalyzed silicone rubber compound with electroconductive carbon black (CB) and SnO2/Sb coated titanium dioxide (TiO2). Two types of acicular‐shaped TiO2 with average particle sizes of 1.7 and 5.2 µm, and two types of spherical‐shaped TiO2 with average particle sizes of 0.3 and 2.5 µm were selected. Thermoelectric switching phenomena were investigated for the silicone rubber/CB/TiO2 system. Positive temperature coefficient (PTC) was significant when the acicular filler was added rather than spherical ones. Resistivity change and thermal reproducibility of the extruded heaters were also investigated by applying periodically AC voltage of 220 V. The heaters containing acicular‐shaped TiO2 exhibited excellent electrical reproducibility.

Scanning electron micrograph of the fractured surface of the extruded composites.  相似文献   


5.
Summary: Ethylene vinyl acetate (EVA) copolymer/dodecyl ammonium ion intercalated montmorillonite (12Me‐MMT) nanocomposites were swelled in xylene under atmospheric condition. Swelling index of these nanocomposites decreased with filler loading indicating that the solvent uptake of these nanocomposites was inversely related to the filler contents. The volume fractions of nanocomposites showed an increasing trend with filler concentration because of unswelling effect exerted by aluminosilicate layers. The cross‐link density was determined using the Flory‐Rehner equation and it was observed that the cross‐link density of these nanocomposites also showed an increasing trend with increasing filler loading. Free energy change (ΔGmix) and the change in entropy (ΔSmix) on swelling of EVA/12Me‐MMT nanocomposites in xylene were calculated and these values reaffirmed that the interaction between polymer chains and silicate layers was very strong which induced remarkable inhibiting ability on EVA matrix when swelled in xylene.

TEM photograph of EVA/12Me‐MMT nanocomposite containing 8 wt.‐% 12Me‐MMT.  相似文献   


6.
Summary: Novel block copolymers containing aromatic polyamide (aramid) and fluoroethylene segments were synthesized by a two‐step solution polycondensation. This synthetic method could control the chain‐length of aramid segments and these copolymers could have high structural regularity. The number‐average molecular weight ( ) of one of these polymers is over 2.0 × 104. Incorporating fluoroethylene segments improves the solubility of the resulting polymer compared with conventional aramids.

The synthesis of the fluoroethylene‐aramid block copolymers.  相似文献   


7.
Summary: Nano‐polyethylene fibers and floccules were prepared under atmospheric pressure via ethylene extrusion polymerization in suit, using the SBA‐15‐supported Cp2ZrCl2 catalytic system. The major morphology units in the samples were fibers and floccules. The diameter of the single nano‐fibers was 120–200 nm. The single nano‐fibers could aggregate to form fiber aggregates and bundles. The number of PE floccules increased with extension of polymerization time, while the melting point of PE with nano‐fibers was little higher than that of common polyethylene.

SEM micrograph of the nano‐polyethylene fibers produced at a polymerization time of 60 min: micro‐fibers and floccule surface morphologies.  相似文献   


8.
Summary: Silica‐supported single‐site catalysts show limitations with respect to catalyst homogeneity and maximum metal content. A novel emulsion‐based catalyst heterogenization concept is described, which allows these limitations to be overcome. The method produces catalyst particles with an inherently perfect spherical shape and unique intra‐ and inter‐particle homogeneity. The catalyst particles are very compact and have a low surface area. Video microscopic studies confirm that the improved catalyst homogeneity leads to a more uniform polymerization behavior on a single particle level. The catalysts contain significantly more complex, compared to silica‐supported catalyst systems, which leads to correspondingly higher catalyst activities. No differences, in terms of the mass‐transfer kinetics of these low‐porosity catalysts, compared to porous catalyst systems have been observed.

Electron microscopy image of self‐supported single‐site catalyst prepared by the emulsion‐based method.  相似文献   


9.
Summary: The effect of silica and its surface treatment on the mechanical properties of composites was studied as part of the evaluation of cyanate ester matrices as potential electronic encapsulants. Three filler surface treatments were used, as a qualitative interfacial adhesion scale, in an attempt to gauge the magnitude of interfacial adhesion between untreated filler and the cyanate ester matrix. There was strong interfacial adhesion between matrix and untreated filler. The level of silica content most affected composite modulus and fracture toughness. Filler surface treatment most affected composite strength and fracture toughness/energy. Composite fracture was found to occur via crack pinning and/or crack blunting depending on the strength of adhesion. The composites evaluated were found to possess suitable mechanical properties for potential use as electronic encapsulants.

  相似文献   


10.
Natural fiber‐reinforced biodegradable polyester composites were prepared from biodegradable polyesters and surface‐untreated or ‐treated abaca fibers (length ca. 5 mm) by melt mixing and subsequent injection molding. Poly(butylene succinate)(PBS), polyestercarbonate (PEC)/poly(lactic acid)(PLA) blend, and PLA were used as biodegradable polyesters. Esterifications using acetic anhydride and butyric anhydride, alkali treatment, and cyanoethylation were performed as surface treatments on the fiber. The flexural moduli of all the fiber‐reinforced composites increased with fiber content. The effect of the surface treatment on the flexural modulus of the fiber‐reinforced composites was not so pronounced. The flexural strength of PBS composites increased with fiber content, and esterification of the fiber by butyric anhydride gave the best result. For the PEC/PLA composites, flexural strength increased slightly with increased fiber content (0–20 wt.‐%) in the case of using untreated fiber, while it increased considerably in the case of using the fiber esterified by butyric anhydride. For the PLA composite, flexural strength did not increase with the fiber reinforcement. The result of soil‐burial tests showed that the composites using untreated fiber have a higher weight loss than both the neat resin and the composites made using acetylated fiber.

Flexural modulus of PBS composites as a function of fiber content.  相似文献   


11.
Summary: Gas‐phase assisted surface polymerization (GASP) of β‐propiolactone (βPL) was investigated using substrate‐supported anionic initiators to produce a strongly bonded poly(β‐propiolactone) (PPL)/CaO composite and a novel PPL crystalline deposit with a high melting point value on Al plates. The polymerization of βPL smoothly proceeded in the gas phase to give high‐molecular‐weight PPLs having high PDI values. An almost linear relationship between value and incremental increase in the deposit suggested the living nature of the GASP of βPL. The obtained polymer‐coated substrates, especially PPL/CaO composite, showed strong interaction at the organic/inorganic interface. Moreover, the thermal and structural analyses of deposits revealed that some specific conformations were formed on CaO powder and Al plate surfaces to give highly crystallized deposits. These results demonstrate that the GASP is an effective method for coating any substrate that has a complex shape and a surface morphology.

Accumulation process of poly(β‐propiolactone) on CaO as substrate‐supported initiator during GASP.  相似文献   


12.
Summary: A review of the processes underlying the solid state postcondensation of poly(ethylene terephthalate) (PET) is presented. Fundamental aspects of the reactions are treated, and it is shown that the rate of polycondensation in the solid state depends on the relative rates of two types of diffusion. On the one hand, the diffusion of reaction by‐products (physical diffusion) controls the rate of the forward reactions. And on the other hand the diffusion of end‐groups (chemical diffusion) allows the reaction to proceed.

The transesterification of BHET to form PET.  相似文献   


13.
Summary: Novel light‐sensitive hollow capsules were fabricated from the small molecule 3‐sulfopropylacrylate potassium (SPA) and poly(allylamine hydrochloride) (PAH). With UV irradiation, SPA could be photopolymerized in the wall of hollow capsules. After photopolymerization the capsule size and surfaces showed pronounced differences. The capsules became much more rigid as indicated by an increase in the modulus of more than a factor of 5.

CLSM image of SPA/PAH hollow capsule emission at 554 nm, from rhodamine B after photopolymerization.  相似文献   


14.
Summary: A novel hyperbranched poly(β‐ketoester) was synthesized from 2‐(acetoacetoxy)ethyl acrylate by the Michael addition in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as catalyst. 1H NMR integration experiments revealed that the degree of branching in the poly(β‐ketoester) was remarkably high at a level of 82.9%. The number‐average molecular weight of the polymer was between 2 100 and 12 000 and increased with reaction temperature and conversion.

Synthesis of hyperbranched polymer by Michael addition of AAEA.  相似文献   


15.
Summary: A solid lubricant composite material was prepared by compression molding PTFE and acid treated nano‐attapulgite. The friction and wear tests were performed on a block‐on‐ring wear tester. Scanning electron microscopy (SEM), energy‐dispersive X‐ray spectrometer (EDS) and DSC were utilized to investigate material microstructures and examine modes of failure. Experimental results showed that there was no significant change in coefficient of friction, but the wear rate of the PTFE composite was orders of magnitude less than that of pure PTFE. Acid treated nano‐attapulgite was superior to untreated nano‐attapulgite in enhancing the wear resistance of PTFE. Moreover, the wear resistance of the composite increased monotonically with increasing treated attapulgite concentration. Investigation of transfer film and analysis of debris for PTFE and its composite showed that acid treated nano‐attapulgite filled to PTFE could facilitate formation of transfer film on the steel ring surface and inhibit breakage of PTFE molecular chain. The PTFE composite with higher heat absorption capacity exhibited improved wear resistance. Furthermore, the steel ring counterface abrasion was not found.

Effect of load on the wear rate of PTFE and its composites.  相似文献   


16.
Summary: A new analysis tool is presented that uses the governing kinetic scheme to predict properties of low‐density polyethylene (LDPE) such as the detailed shape of the molecular weight distribution (MWD). A model that captures mixing details of autoclave reactor operation is used to provide a new criterion for the onset of MWD shouldering. Kinetic effects are shown to govern the existence of MWD shoulders in LDPE reactors, even when operation is far from perfectly‐mixed. MWD shoulders occur when the mean reaction environment has a relatively high radical concentration and has a high polymer content, and is at a low temperature. Such conditions maximize long chain formation by polymer transfer and combination‐termination, while limiting chain scission. For imperfectly‐mixed reactors, the blending of polymer‐distributions produced in different spatial locations has a small effect on the composite MWD. However, for adiabatic LDPE autoclaves, imperfect mixing broadens the stable range of mean reactor conditions, and thereby increases the possibility for MWD shouldering.

Polymer MWD produced in an LDPE autoclave reactor by various kinetic mechanisms.  相似文献   


17.
New models for the Maddock and spiral shearing sections have been developed, employing three‐dimensional finite element analysis (3D FEA). These models describe the pressure‐throughput and power consumption behavior of the shearing sections for both the extrusion and the injection molding process and have been implemented in the REX 6.0 and PSI 4.0 simulation software. As a consequence it is now possible to describe the process behavior of these shearing sections within just a few seconds with the accuracy of FEA calculations.

Actual Maddock shearing section (left) and actual spiral shearing section (right).  相似文献   


18.
Summary: A novel method was used to prepare poly(propylene)/montmorillonite/calcium carbonate nanocomposites by melt‐mixing, using pristine montmorillonite (MMT), hexadecyltrimethylammonium bromide (C16), calcium carbonate (CaCO3) and a matrix in a twin‐screw extruder. Two different sizes of calcium carbonate were used (nanosized CaCO3 and micron‐sized CaCO3, the average sizes being 60 nm and 12 μm respectively). The nanocomposite structure was evidenced using X‐ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution electronic microscopy (HREM). Tensile tests and Izod notch impact tests suggested that the incorporation of nanosized CaCO3 into PP/montmorillonite nanocomposites increased the mechanical properties of the composites, but the improvement in the micro‐sized CaCO3‐filled PP/montmorillonite nanocomposites was found to be minimal. The thermal stability and flammability properties were characterized by thermogravimetric analysis (TGA) and a cone calorimeter respectively.

  相似文献   


19.
Preparation and properties of poly(propylene)‐poly(propylene) composites have been investigated. Poly(propylene) fibres of varying diameter have been incorporated in a random ethylene co‐poly(propylene). The composites prepared from the same semi‐crystalline polymer in the matrix and reinforcement have lead to inherently strong interfacial bonding between the two phases of the same polymer. The composites demonstrated enhanced stiffness, which increased with fibre diameter. The structure, thermal, static and mechanical properties of poly(propylene) long fibre reinforced random co‐poly(propylene) composites have been studied with reference to the fibre diameter. The matrix and fibre components retained their separate melting temperatures. After melting, the two phases remained separate and showed their individual crystallization temperatures on cooling, and melting temperatures on a second heating. The melting temperature of the poly(propylene) fibres increased after formation of the composites. The compression molding of the composites at a temperature below the melting temperature of the fibres caused annealing of the fibre crystals. By incorporation of long poly(propylene) fibre into random co‐poly(propylene), the glass transition, storage and static modulus have been found to be increasing and composite with the largest fibre diameter shows better properties. Transcrystallization of the matrix poly(propylene) was observed.

Optical microscopy of composites with fibre diameter 68 μm.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号