首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
杨晓江 《连铸》2016,35(5):21-25
唐钢薄板坯连铸连轧线在2012年围绕提高连铸拉速对薄板坯连铸机进行工艺技术优化,优化后连铸工作拉速由原来的4 m/min以下提高到4.5~5.5 m/min,最高拉速可以达到6.0 m/min。为解决连铸拉速提高后铸坯质量缺陷增加的问题,对高拉速保护渣、浸入式水口、结晶器冷却方式和结晶器窄板进行技术优化研究。通过优化,连铸坯的裂纹缺陷率降至0.1%以下,表面夹渣缺陷率不高于0.03%,结晶器铜板寿命显著延长,漏钢率不高于0.1%,实现了高拉速下薄板坯连铸的稳定生产。  相似文献   

2.
郑原首 《连铸》2020,45(3):10-13
研究分析连铸普钢高效化的生产工艺,得出高效化连铸面临的主要问题为漏钢、铸坯内部缺陷和脱方。采用改善点状高效结晶器和高拉速保护渣、优化二冷比配水、降低钢水过热度和拉矫机压力的措施,提高了160 mm×160 mm小方坯连铸拉速,最高拉速从3.2 m/min提高到3.7 m/min。铸坯漏钢、内部质量和脱方也得到较好的控制。  相似文献   

3.
邓勇  杨利彬  汪成义 《连铸》2022,41(1):72-77
为了进一步解决连铸高拉速条件下的板坯质量问题,马钢有针对性地开展了低碳钢板坯高拉速连铸技术研发工作。通过采用高效连铸防粘结技术、高效强冷结晶器控制技术、低黏度保护渣优化控制技术、水口堵塞控制技术、动态二冷凝固控制技术等技术措施,解决了高拉速条件下出现的坯壳凝固不均匀、结晶器卷渣、铸坯质量等技术难题;稳定提升1 200 mm宽断面(厚度230 mm)低碳钢铸坯拉速至1.8 m/min;拉速由1.6提至1.8 m/min之后,炉均可减少浇铸时间2.5 min,连铸平均连浇炉数达到6炉以上。技术改进后,有效缩短了浇铸周期,提高了生产效率。  相似文献   

4.
杨杰  姚海明  郝占全 《连铸》2016,35(5):47-53
介绍了唐钢薄板坯连铸机实现高拉速的关键技术。通过对结晶器铜板冷却、结晶器液位检测及LQG控制、抗鼓肚模型、INMO结晶器振动台、高拉速浸入式水口、高拉速保护渣、扇形段非均匀辊列设计及二次冷却等技术的研究、优化和应用,使薄板坯连铸拉速达到6 m/min,并且结晶器液位稳定,铸坯合格率达到99.8%以上。  相似文献   

5.
高拉速是小方坯连铸机螺纹钢实现低成本且绿色化生产的必要条件,是连铸整体技术进步的体现。福建三钢二炼钢3号小方坯连铸机经高效化改造,160 mm×160 mm断面螺纹钢拉速达到6.0 m/min的能力,生产过程拉速提高到4.1 m/min时发生漏钢以及铸坯拉断事故。综合采用调研及追溯等手段分析引起漏钢事故的机理及影响因素,发现结晶器振动工艺、浸入式水口插入深度及保护渣性能参数是引起漏钢的主要因素,从机理和模型角度研究了3个因素对漏钢定性和定量化影响规律。结果表明,在结晶器均匀强冷已实现条件下结晶器润滑状态对高拉速的稳定生产有决定性影响,合适的振动工艺是其限制性因素。采用优化后的结晶器振动工艺(脱模平均速率大于20 mm/s)、保护渣(碱度0.9、熔点1 020℃、黏度0.23 Pa·s)以及浸入式水口插入深度(120 mm),160 mm×160 mm断面小方坯螺纹钢拉速从4.1 m/min最终提高到6 m/min且未发生漏钢事故。  相似文献   

6.
李金柱  王胜东 《连铸》2014,33(3):1-6
为了提高首钢京唐炼钢的生产节奏,缩短连铸生产周期。研究在现有铸机参数的基础上,通过对结晶器冷却水、二冷配水、浸入式水口结构、保护渣成分等参数进行优化,3号铸机的最高拉速达到2.5 m/min,超过2.3 m/min的设计值。工业生产实践表明,转炉出钢温度降低,铸坯表层的夹杂物数量减少,提高了铸坯质量,体现了新一代钢铁工艺流程的优势。  相似文献   

7.
针对薄板坯连铸机高拉速生产过程中存在的板坯表面纵裂纹缺陷、结晶器液位波动和结晶器宽面铜板低寿命等问题,自主开发了高拉速系列化保护渣技术、高拉速浸入式水口技术、高拉速结晶器铜板技术。薄板坯连铸机的拉速达到6.0 m/min,铸坯表面纵裂纹缺陷比率降低了90%,板坯表面质量满足品种开发和产品质量要求。  相似文献   

8.
常规板坯铸机浇注窄断面铸坯或生产品种钢时,浇注周期被迫延长,难以实现炉机匹配,严重制约了炼钢车间的生产能力,因此提高连铸机的生产率迫在眉睫,高拉速已成为现代连铸发展的重要方向。本文回顾了国内外高拉速板坯连铸技术发展历程,总结了高拉速连铸的技术特点,重点介绍了高效强冷结晶器、非正弦振动、钢液流动控制、高拉速结晶器保护渣、FC (flow control)结晶器、二冷精准控制等多项关键技术,用于解决高拉速板坯稳定生产的技术难题。高拉速的实现是一项集工艺、装备、生产操作与自动化控制于一体的综合性技术。  相似文献   

9.
《轧钢》2017,(2)
正2015年,日照钢铁在国内率先引进ESP无头带钢生产线。该产线结晶器至卷取机长度约170 m,铸机拉速约6 m/min,钢水成卷仅需7min,最薄规格0.8mm,规格不大于1.0mm的比例达到30%。除头尾坯外,均采用无头轧制,铸坯恒拉速,相同厚度规格恒轧速,轧件横向纵向温度控  相似文献   

10.
某钢厂采用五机五流连铸机生产的φ150 mm铸坯外形不良,即不圆度严重超标,以致拉速被限制在仅为1.8~2.1 m/min的低水平。试验发现,φ150 mm铸坯形状不良的主要原因是冷却不均匀导致的热变形。通过连铸冷却工艺、二冷设备以及拉矫机压力系统的优化,彻底解决了φ150 mm铸坯形状不良的问题,拉速提高到了2.5 m/min。  相似文献   

11.
作为连铸生产设备中的关键部件,结晶器对高拉速连铸起到了至关重要的作用。通过建立结晶器平均热流密度计算模型,计算结晶器内控制单元中凝固坯壳、糊状区及液态钢水区对应的质量,进一步计算整个控制单元的散热量,从而得到结晶器的平均热流密度。结合低拉速结晶器实际生产工况参数以及数值模拟分析,验证了模型的准确性。在高拉速工况下分析得到:对于160 mm×160 mm小方坯,在有效结晶器长度为900 mm、拉速为6 m/min的条件下,其结晶器出口处凝固坯壳厚度达到10 mm时,结晶器平均热流密度约为4 200 kW/m2;以模型计算得到的热流密度为边界条件,应用有限元仿真软件进行结晶器内钢液凝固状态模拟,计算结果显示凝固坯壳厚度为10 mm。根据平均热流密度计算模型得到的热流密度,结合管内受迫对流换热模型,设计了4种不同的结晶器冷却结构并计算其对流换热系数。利用计算得到的对流换热系数,推导出结晶器各种冷却结构对应的热流密度,得到了适用于高拉速的结晶器冷却结构及水流量。  相似文献   

12.
为提高唐钢FSTC薄板坯连铸机拉速,采用了精准控制钢水成分和温度,开发高拉速专用保护渣,优化浸入式水口和结晶器结构,应用电磁制动技术等措施,使铸机最高拉速由4.5提高至6.0 m/min,且提拉速后铸坯表面质量良好,内部组织无偏析、缩孔、疏松等缺陷,生产的热轧卷具有良好的组织和性能。  相似文献   

13.
詹美珠  王胜东  张立峰  陈威 《连铸》2022,41(3):39-44
为了研究提高拉速对包晶类镀锡板连铸坯中夹杂物的影响,采用自动扫描电镜研究了不同拉速下包晶类镀锡板连铸坯中夹杂物的分布规律。结果表明,将包晶类镀锡板连铸拉速从1.3 m/min依次提高到1.4和1.5 m/min时,结晶器液面波动大于3 mm的比例都小于0.40%。拉速为1.4和1.5 m/min下连铸坯厚度四分之一处大于3μm的夹杂物数密度平均值分别为1.15和1.36个/mm2,面积百分数平均值分别为0.001 9%和0.002 4%,均低于拉速为1.3 m/min时的测量值。将拉速从1.3 m/min提高到1.5 m/min过程中,结晶器液面控制平稳,连铸坯表层大于10μm夹杂物数密度和面积百分数均呈减小趋势,最终实现了包晶类镀锡板高拉速稳定的工业化生产。  相似文献   

14.
水平连铸是生产铜板带坯的常用方法,探索工艺参数变化对铸坯质量的影响规律十分重要。采用数值模拟的方法分析了水平连铸拉速变化对结晶器内温度场、液穴深度、冷却速率等的影响规律,并结合工艺试验揭示了拉速变化对铸坯组织的影响机理。结果表明,随着铸坯拉速的不断提高,结晶器内的液穴深度持续增加,铸坯表面和芯部沿牵引方向的冷却速率均逐渐降低,且二者的冷却速率差值逐渐减小,当拉速为149 mm/min时,二者冷却速率达到相同;随着铸坯拉速的不断提高,铸坯截面上晶粒生长方向与牵引方向的夹角θ逐渐增大,晶粒生长距离缩短,铸坯表面上晶粒数目增加,平均晶粒直径从1.96 mm逐渐减小到1.05 mm,整体组织均匀性明显提高。  相似文献   

15.
为了实现电炉厂提产增效的目标,研究了脉冲磁致振荡(PMO)在提高铸坯生产拉速中的应用潜能。结果表明,优化PMO处理参数可以适应生产拉速提高的要求,并改善铸坯的中心偏析和宏观偏析。当连铸拉速提至1.05 m/min,PMO脉冲频率为1.16Kf Hz,峰值电压为1.00KiV处理参数(KfKi分别为仪器的放电频率和电压峰值)时, 铸坯横断面碳偏析指数可控制在1±0.05内;当连铸拉速提至1.15 m/min,PMO脉冲频率为1.28KfHz,峰值电压为1.00KiV处理参数时,铸坯横断面碳偏析指数可控制在1±0.07内。试验证明,在高拉速条件下通过保证单位时间内对钢液施加的脉冲能量可以使连铸坯质量得到有效改善。  相似文献   

16.
建立凝固模型并结合射钉试验对模型进行验证,通过理论分析研究了不同拉速和过热度对铸坯凝固过程的影响。理论上证明了试验铸机Φ150 mm断面拉速提高至2.7m/min的可行性。通过优化结晶器冷却、结晶器电磁搅拌以及二冷工艺的参数,将实际拉速提高至2.7m/min后,获得了表面质量和内部质量良好的圆坯,满足计划要求。同时结果也表明,中间包钢液过热度及二冷冷却不均容易造成铸坯中心缩孔以及中间裂纹等铸坯质量不稳定的问题。  相似文献   

17.
针对在高拉速情况下薄板坯连铸过程中频繁出现"冷齿"、黏结以及铸坯表面纵裂纹较多等问题,依据中碳钢凝固收缩特性并结合现场实际生产情况,开发了一种适合在高拉速情况下薄板坯中碳钢连铸用保护渣。生产实践表明,在拉速提高后,使用新型保护渣基本避免了铸坯表面纵裂纹的产生,也无"冷齿"、黏结等报警现象出现,铸坯质量显著提高,完全满足生产要求。  相似文献   

18.
角部表面纵裂和偏离角裂纹是小方坯连铸中的常见缺陷。通过建立小方坯连铸结晶器内铸坯与铜管热-力耦合有限元模型,研究了不同拉速条件下小方坯在结晶器内的热-力学行为。计算分析了拉速、钢水过热度和结晶器锥度等工艺因素对结晶器内坯壳温度分布和塑性应变的影响。结果表明,铸坯角部纵裂和偏离角裂纹容易在结晶器下部发生;提高拉速、降低钢水过热度、采用多锥度结晶器均有利于降低亚包晶钢坯壳凝固前沿偏离角区域的拉应变及其裂纹倾向。一定条件下,高拉速有利于改善结晶器区域坯壳厚度和温度的均匀性、降低亚包晶钢小方坯连铸结晶器内常见裂纹的发生倾向。  相似文献   

19.
恒温出坯是实现长型材高速连铸直轧过程的一个重要条件。为成功地实现恒温连铸坯,本文采用有限元模拟的方法,研究了从结晶器弯月面到切割点位置整个过程中铸坯拉速、冷却强度以及铸坯角部圆角半径等因素对铸坯温度分布的影响。结果显示,为满足直轧过程对铸坯温度分布的要求,一般情况下拉速应控制在2.6 m/min以上。当拉速控制在2.2 m/min时,二冷水流量不宜超过60 L/min。当铸坯角部圆角半径尺寸为铸坯断面尺寸的15%~25%时,铸坯角部温度温降速率将会明显降低。  相似文献   

20.
某新建165 mm×1 100 mm板坯连铸机,其稳定工作拉速为2.2 m/min。结晶器作为第一凝固区,直接决定了工作拉速、初生坯壳厚度和最终铸坯质量。以设计计算为依据,借鉴常规板坯结晶器的结构设计,从铜板水缝排布、宽窄面足辊支承和布置、夹紧装置预紧力设定、调宽调锥装置等方面分析及优化。采用强化弯月面冷却的水缝排布形式,宽面双排小辊径足辊,可实现刚性工作的碟簧预紧型窄面足辊,大预紧力的夹紧装置,合理连接形式及布置的结晶器调宽装置等技术,以确保该规格铸机高拉速和高品质的实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号