首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computational model for micropolar hyperelastic‐based finite elastoplasticity that incorporates isotropic hardening is developed. The basic concepts of the non‐linear micropolar kinematic framework are reviewed, and a thermodynamically consistent constitutive model that features Neo‐Hooke‐type elasticity and generalized von Mises plasticity is described. The integration of the constitutive initial value problem is carried out by means of an elastic‐predictor/plastic‐corrector algorithm, which retains plastic incompressibility. The solution procedure is developed carefully and described in detail. The consistent material tangent is derived. The micropolar constitutive model is implemented in an implicit finite element framework. The numerical example of a notched cylindrical bar subjected to large axial displacements and large twist angles is presented. The results of the finite element simulations demonstrate (i) that the methodology is capable of capturing the size effect in three‐dimensional elastoplastic solids in the finite strain regime, (ii) that the formulation possesses a regularizing effect in the presence of strain localization, and (iii) that asymptotically quadratic convergence rates of the Newton–Raphson procedure are achieved. Throughout this paper, effort is made to present the developments as a direct extension of standard finite deformation computational plasticity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A computational method is developed for evaluating the plastic strain gradient hardening term within a crystal plasticity formulation. While such gradient terms reproduce the size effects exhibited in experiments, incorporating derivatives of the plastic strain yields a nonlocal constitutive model. Rather than applying mixed methods, we propose an alternative method whereby the plastic deformation gradient is variationally projected from the elemental integration points onto a smoothed nodal field. Crucially, the projection utilizes the mapping between Lie groups and algebras in order to preserve essential physical properties, such as orthogonality of the plastic rotation tensor. Following the projection, the plastic strain field is directly differentiated to yield the Nye tensor. Additionally, an augmentation scheme is introduced within the global Newton iteration loop such that the computed Nye tensor field is fed back into the stress update procedure. Effectively, this method results in a fully implicit evolution of the constitutive model within a traditional displacement‐based formulation. An elemental projection method with explicit time integration of the plastic rotation tensor is compared as a reference. A series of numerical tests are performed for several element types in order to assess the robustness of the method, with emphasis placed upon polycrystalline domains and multi‐axis loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the method of additive plasticity at finite deformations is generalized to the micropolar continuous media. It is shown that the non-symmetric rate of deformation tensor and gradient of gyration vector could be decomposed into elastic and plastic parts. For the finite elastic deformation, the micropolar hypo-elastic constitutive equations for isotropic micropolar materials are considered. Concerning the additive decomposition and the micropolar hypo-elasticity as the basic tools, an elastic–plastic formulation consisting of an arbitrary number of internal variables and arbitrary form of plastic flow rule is derived. The localization conditions for the micropolar material obeying the developed elastic–plastic constitutive equations are investigated. It is shown that in the proposed formulation, the rate of skew-symmetric part of the stress tensor does not exhibit any jump across the singular surface. As an example, a generalization of the Drucker–Prager yield criterion to the micropolar continuum through a generalized form of the J 2-flow theory incorporating isotropic and kinematic hardenings is introduced.  相似文献   

4.
The scale-dependent mechanical response of single crystal thin films subjected to pure bending is investigated using a dislocation-based model of micropolar single crystal plasticity via finite element simulations. Due to the presence of couple stresses, the driving force for plastic slip in a micropolar crystal contains an intrinsic back stress component that is related to gradients in lattice torsion-curvature. Strain gradient-dependent back stresses are a common feature of various types of generalized crystal plasticity theories; however, it is often introduced either in a phenomenological manner without additional kinematics or by designating the plastic slips as generalized degrees-of-freedom. The treatment of lattice rotations as fundamental degrees-of-freedom instead of plastic slips greatly reduces the complexity (computational expense) of the single crystal model, and leads to the incorporation of additional elastoplastic kinematics since the lattice torsion-curvature is taken as a work-conjugate continuum deformation measure. A recently proposed single criterion micropolar framework is employed in which the evolution of both the plastic strains and torsion-curvatures are coupled through the use of a unified flow rule. The deformation behavior is characterized by the moment-rotation response and the dislocation substructure evolution for various slip configurations and specimen thicknesses. The results are compared to analogous simulations carried out using a model of discrete dislocation dynamics as well as a statistical-mechanics inspired, flux-based model of nonlocal crystal plasticity. The micropolar model demonstrates good qualitative and quantitative agreement with the previous results up to certain inherent limitations of the current formulation.  相似文献   

5.
Based on new modified couple stress theory a model for composite laminated Reddy plate is developed in first time. In this theory a new curvature tensor is defined for establishing the constitutive relations of laminated plate. The characterization of anisotropy is incorporated into higher-order laminated plate theories based on the modified couple stress theory by Yang et al. in 2002. The form of new curvature tensor is asymmetric, however it can result in same as the symmetric curvature tensor in the isotropic elasticity. The present model of thick plate can be viewed as a simplified couple stress theory in engineering mechanics. Moreover, a more simplified model for cross-ply composite laminated Reddy plate of couple stress theory with one material’s length constant is used to demonstrate the scale effects. Numerical results show that the present plate model can capture the scale effects of microstructure. Additionally, the present model of thick plate model can be degenerated to the model of composite cross-ply laminated Kirchhoff plate and Mindlin plate of couple stress theory.  相似文献   

6.
Modeling of nonlinear viscoelasticity at large deformations   总被引:1,自引:0,他引:1  
A constitutive model of finite strain viscoelasticity, based on the multiplicative decomposition of the deformation gradient tensor into elastic and inelastic parts, is presented. The nonlinear response of rubbers, manifested by the rate effect, cycling loading and stress relaxation tests was captured through the introduction of two internal variables, namely the constitutive spin and the back stress tensor. These parameters, widely used in plasticity, are applied in this work to model the nonlinear viscoelastic behaviour of rubbers. The experimental results, obtained elsewhere, related with shear deformation in monotonic and cyclic loading, as well as stress-relaxation, were simulated with a good accuracy.  相似文献   

7.
This paper presents a time‐integration method for a viscoplastic physics‐based polymer model at finite strains. The macromolecular character of the model resides in (i) the viscoplastic law based on a double‐kink molecular mechanism, and (ii) a full chain network model inspired by rubber elasticity to describe the large‐strain orientation hardening. A back stress enters the constitutive model formulation. Essential aspects of a three‐dimensional finite‐element implementation are outlined, the main novelty being in the back stress formulation. The computational efficiency and accuracy of the algorithm are examined in a series of parameter studies. In addition, because a co‐rotational formulation of the constitutive equations is employed using the Jaumann rate in the hypoelastic equation and the back stress evolution equation a detailed analysis of stress oscillations is carried out up to very large strains in simple shear. Subsequently, three‐dimensional FE analyses of compression with friction and instability propagation in tension are used as a means to demonstrate the robustness of the implementation and the potential occurrence of stress oscillations and shear bands in large‐strain analyses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
We investigate geometrically exact generalized continua of Cosserat micropolar type. A variational form of these models is recalled and extended to finite-strain elasto-plasticity based on the multiplicative decomposition of the deformation gradient. The stress driving the plastic evolution is the Eshelby energy momentum tensor. No plastic Cosserat rotation is introduced and the plastic spin is set to zero. It is argued that the traditional Cosserat couple modulus μc should be set to zero for polycrystal specimens liable to fracture in shear, still leading to a complete Cosserat theory with independent rotations in the geometrically exact case in contrast to the infinitesimal, linearized model. A geometrical linearization of the presented finite-strain plasticity model is already shown to be well posed.  相似文献   

9.
The macroscopic behavior of materials is affected by their inner micro‐structure. Elementary considerations based on the arrangement, and the physical and mechanical features of the micro‐structure may lead to the formulation of elastoplastic constitutive laws, involving hardening/softening mechanisms and non‐associative properties. In order to model the non‐linear behavior of micro‐structured materials, the classical theory of time‐independent multisurface plasticity is herein extended to Cosserat continua. The account for plastic relative strains and curvatures is made by means of a robust quadratic‐convergent projection algorithm, specifically formulated for non‐associative and hardening/softening plasticity. Some important limitations of the classical implementation of the algorithm for multisurface plasticity prevent its application for any plastic surfaces and loading conditions. These limitations are addressed in this paper, and a robust solution strategy based on the singular value decomposition technique is proposed. The projection algorithm is then implemented into a finite element formulation for Cosserat continua. A specific finite element is considered, developed for micropolar plates. The element is validated through illustrative examples and applications, showing able performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A new boundary element formulation is developed to analyze two‐dimensional size‐dependent piezoelectric response in isotropic dielectric materials. The model is based on the recently developed consistent couple stress theory, in which the couple‐stress tensor is skew‐symmetric. For isotropic materials, there is no classical piezoelectricity, and the size‐dependent piezoelectricity or flexoelectricity effect is solely the result of coupling of polarization to the skew‐symmetric mean curvature tensor. As a result, the size‐dependent effect is specified by one characteristic length scale parameter l, and the electromechanical effect is specified by one flexoelectric coefficient f. Interestingly, in this size‐dependent multi‐physics model, the governing equations are decoupled. However, the problem is coupled, because of the existence of a flexoelectric effect in the boundary couple‐traction and normal electric displacement. We discuss the boundary integral formulation and numerical implementation of this size‐dependent piezoelectric boundary element method, which provides a boundary‐only formulation involving displacements, rotations, force‐tractions, couple‐tractions, electric potential, and normal electric displacement as primary variables. Afterwards, we apply the resulting BEM formulation to several computational problems to confirm the validity of the numerical implementation and to explore the physics of the flexoelectric coupling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A gradient‐enhanced computational homogenization procedure, that allows for the modelling of microstructural size effects, is proposed within a general non‐linear framework. In this approach the macroscopic deformation gradient tensor and its gradient are imposed on a microstructural representative volume element (RVE). This enables us to incorporate the microstructural size and to account for non‐uniform macroscopic deformation fields within the microstructural cell. Every microstructural constituent is modelled as a classical continuum and the RVE problem is formulated in terms of standard equilibrium and boundary conditions. From the solution of the microstructural boundary value problem, the macroscopic stress tensor and the higher‐order stress tensor are derived based on an extension of the Hill–Mandel condition. This automatically delivers the microstructurally based constitutive response of the higher‐order macro continuum and deals with the microstructural size in a natural way. Several examples illustrate the approach, particularly the microstructural size effects. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an efficient mathematical algorithm for a class of non‐linear kinematic hardening models with multiple back stresses, as an extension of the implicit integration algorithm for a single back stress hardening model. Explicit formulations for general three‐dimensional stress states as well as plane stress and plane strain are given. The new formulation is implemented in a general‐purpose finite element code, ABAQUS, and is verified by comparison with the existing formulation for the single back‐stress constitutive model. Comparison is also made with the experimental results obtained from a plate containing a circular hole subjected to cyclic loading, demonstrating the validity of new method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Micropolar elasticity laws provide a possibility to describe constitutive properties of materials for which internal length scales may become important. They are characterized by the presence of couple stresses and nonsymmetric Cauchy stress tensor. Beyond the classical displacement field, the kinematical variables are augmented by a so-called microrotation field and its gradient, the latter introducing an internal length scale in the theory. For an isotropic, linear micropolar elastic material, the near-tip asymptotic field solutions for mode I and mode II cracks are derived. It is shown that these solutions behave similar to those according to the so-called couple stress theory, which has been investigated by Huang et al. (1997a), or similar to those derived for cellular materials by Chen et al. (1998). In particular, the singular fields have an order of singularity r –1/2 and are governed by some amplitude factors, having the meaning of stress intensity factors as in the classical linear elastic theory. The effect of material parameters on the stress intensity factors is studied by applying the finite element method to calculate the values of the stress intensity factors for an edge-cracked specimen of finite width.  相似文献   

14.
This paper addresses the formulation of a set of constitutive equations for finite deformation metal plasticity. The combined isotropic-kinematic hardening model of the infinitesimal theory of plasticity is extended to the large strain range on the basis of three main assumptions: (i) the formulation is hyperelastic based, (ii) the stress-strain law preserves the elastic constants of the infinitesimal theory but is written in terms of the Hencky strain tensor and its elastic work conjugate stress tensor, and (iii) the multiplicative decomposition of the deformation gradient is adopted. Since no stress rates are present, the formulation is, of course, numerically objective in the time integration. It is shown that the model gives adequate physical behaviour, and comparison is made with an equivalent constitutive model based on the additive decomposition of the strain tensor.  相似文献   

15.
The flow-theory version of couple stress strain gradient plasticity is adopted for investigating the asymptotic fields near a steadily propagating crack-tip, under Mode III loading conditions. By incorporating a material characteristic length, typically of the order of few microns for ductile metals, the adopted constitutive model accounts for the microstructure of the material and can capture the strong size effects arising at small scales. The effects of microstructure result in a substantial increase in the singularities of the skew-symmetric stress and couple stress fields, which occurs also for a small hardening coefficient. The symmetric stress field turns out to be non-singular according to the asymptotic solution for the stationary crack problem in linear elastic couple stress materials. The performed asymptotic analysis can provide useful predictions about the increase of the traction level ahead of the crack-tip due to the sole contribution of the rotation gradient, which has been found relevant and non-negligible at the micron scale.  相似文献   

16.
As soon as material failure dominates a deformation process, the material increasingly displays strain softening and the finite element computation is significantly affected by the element size. Without remedying this effect in the constitutive model one cannot hope for a reliable prediction of the ductile material failure process. In the present paper, a micro‐mechanical damage model coupled to gradient‐dependent plasticity theory is presented and its finite element algorithm is discussed. By incorporating the Laplacian of plastic strain into the damage constitutive relationship, the known mesh‐dependence is overcome and computational results are uniquely correlated with the given material parameters. The implicit C1 shape function is used and can be transformed to arbitrary quadrilateral elements. The introduced intrinsic material length parameter is able to predict size effects in material failure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A generalization of the Lorentz reciprocal theorem is developed for the creeping flow of micropolar fluids in which the continuum equations involve both the velocity and the internal spin vector fields. In this case, the stress tensor is generally not symmetric and conservation laws for both linear and angular momentum are needed in order to describe the dynamics of the fluid continuum. This necessitates the introduction of constitutive equations for the antisymmetric part of the stress tensor and the so-called couple-stress in the medium as well. The reciprocal theorem, derived herein in the limit of negligible inertia and without external body forces and couples, provides a general integral relationship between the velocity, spin, stress and couple-stress fields of two otherwise unrelated micropolar flow fields occurring in the same fluid domain.  相似文献   

18.
This paper presents a three‐invariant constitutive framework suitable for the numerical analyses of localization instabilities in granular materials exhibiting unstructured random density. A recently proposed elastoplastic model for sands based on critical state plasticity is enhanced with the third stress invariant to capture the difference in the compressive and extensional yield strengths commonly observed in geomaterials undergoing plastic deformation. The new three‐invariant constitutive model, similar to its two‐invariant predecessor, is capable of accounting for meso‐scale inhomogeneities as well as material and geometric nonlinearities. Details regarding the numerical implementation of the model into a fully nonlinear finite element framework are presented and a closed‐form expression for the consistent tangent operator, whose spectral form is used in the strain localization analyses, is derived. An algorithm based on the spectral form of the so‐called acoustic tensor is proposed to search for the necessary conditions for deformation bands to develop. The aforementioned framework is utilized in a series of boundary‐value problems on dense sand specimens whose density fields are modelled as exponentially distributed unstructured random fields to account for the effect of inhomogeneities at the meso‐scale and the intrinsic uncertainty associated with them. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号