首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L. He  Q. Tan  Z. F. Liu 《工程优选》2013,45(8):709-728
An interval full-infinite programming (IFIP) method is developed by introducing a concept of functional intervals into an optimization framework. Since the solutions of the problem should be ‘globally’ optimal under all possible levels of the associated impact factors, the number of objectives and constraints is infinite. To solve the IFIP problem, it is converted to two interactive semi-infinite programming (SIP) submodels that can be solved by conventional SIP solution algorithms. The IFIP method is applied to a solid waste management system to illustrate its performance in supporting decision-making. Compared to conventional interval linear programming (ILP) methods, the IFIP is capable of addressing uncertainties arising from not only the imprecise information but also complex relations to external impact factors. Compared to SIP that can only handle problems containing infinite constraints, the IFIP approaches are useful for addressing inexact problems with infinite objectives and constraints.  相似文献   

2.
Robust bi-level optimization models in transportation science   总被引:1,自引:0,他引:1  
Mathematical programmes with equilibrium constraints (MPECs) constitute important modelling tools for network flow problems, as they place 'what-if' analyses in a proper mathematical framework. We consider a class of stochastic MPEC traffic models that explicitly incorporate possible uncertainties in travel costs and demands. In stochastic programming terminology, we consider 'here-and-now' models where decisions must be made before observing the uncertain parameter values and the responses of the network users; the objective is to minimize the expectation of the upper-level objective function. Such a model could, for example, be used to derive a fixed toll pricing scheme that provides the best revenue for a given network over a time period, where variations in traffic conditions and demand elasticities are described by distributions of parameters in the travel time and demand functions.We present new results on the stability of globally optimal solutions to perturbations in the probability distribution, establishing the robustness of the model. We also discuss penalization and discretization algorithms, the latter enabling the use of standard MPEC algorithms, and provide many future research avenues.  相似文献   

3.
The paper suggests a possible cooperation between stochastic programming and optimal control for the solution of multistage stochastic optimization problems. We propose a decomposition approach for a class of multistage stochastic programming problems in arborescent form (i.e. formulated with implicit non-anticipativity constraints on a scenario tree). The objective function of the problem can be either linear or nonlinear, while we require that the constraints are linear and involve only variables from two adjacent periods (current and lag 1). The approach is built on the following steps. First, reformulate the stochastic programming problem into an optimal control one. Second, apply a discrete version of Pontryagin maximum principle to obtain optimality conditions. Third, discuss and rearrange these conditions to obtain a decomposition that acts both at a time stage level and at a nodal level. To obtain the solution of the original problem we aggregate the solutions of subproblems through an enhanced mean valued fixed point iterative scheme.  相似文献   

4.
The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least‐squares technique is developed. Only one displacement variable is required for each EFG node, ensuring that the total number of variables in the resulting optimization problem is kept to a minimum, with far fewer variables being required compared with finite element formulations using compatible elements. A stabilized conforming nodal integration scheme is extended to plastic plate bending problems. The evaluation of integrals at nodal points using curvature smoothing stabilization both keeps the size of the optimization problem small and also results in stable and accurate solutions. Difficulties imposing essential boundary conditions are overcome by enforcing displacements at the nodes directly. The formulation can be expressed as the problem of minimizing a sum of Euclidean norms subject to a set of equality constraints. This non‐smooth minimization problem can be transformed into a form suitable for solution using second‐order cone programming. The procedure is applied to several benchmark beam and plate problems and is found in practice to generate good upper‐bound solutions for benchmark problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we present a hierarchical optimization method for finding feasible true 0–1 solutions to finite‐element‐based topology design problems. The topology design problems are initially modelled as non‐convex mixed 0–1 programs. The hierarchical optimization method is applied to the problem of minimizing the weight of a structure subject to displacement and local design‐dependent stress constraints. The method iteratively treats a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse and then successively refined as needed. At each level of design mesh refinement, a neighbourhood optimization method is used to treat the problem considered. The non‐convex topology design problems are equivalently reformulated as convex all‐quadratic mixed 0–1 programs. This reformulation enables the use of methods from global optimization, which have only recently become available, for solving the problems in the sequence. Numerical examples of topology design problems of continuum structures with local stress and displacement constraints are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
《工程优选》2012,44(1):165-184
ABSTRACT

Many engineering design problems are frequently modelled as nonlinear programming problems with discrete signomial terms. In general, signomial programs are very difficult to solve for obtaining the globally optimal solution. This study reformulates the engineering design problem with discrete signomial terms as a mixed-integer linear program and finds all alternative global optima. Compared with existing exact methods, the proposed method uses fewer variables and constraints in the reformulated model and therefore efficiently solves the engineering problem to derive all global optima. Illustrative examples from the literature are solved to demonstrate the usefulness and efficiency of the proposed method.  相似文献   

7.
A hybrid 'dynamic programming/depth-first search' algorithm has been developed to solve non-linear integer programming problems arising in the reliability optimization of redundancy allocation. Initially, the technique solves the knapsack relaxation of the original mathematical programming problem using dynamic programming. Then, all solutions in some range of the relaxation problem are obtained via an enumerative depth-first search technique. The solutions are ranked and the optimal solution is given by the best one that satisfies the remaining constraints of the given problem. Computational complexity of the algorithm is also discussed. The salient features of our hybrid algorithm are its simplicity and ease of programming. Our algorithm also has an advantage over the traditional Lagrangian and surrogate dual approaches. It does not have to deal with the issue of 'duality gap' as in classical dual approaches, which is responsible for the failure to identify optimal solutions to the primal integer optimization problems. Of most importance, it guarantees to succeed in identifying an optimal solution.  相似文献   

8.
This paper discusses an optimization‐based technique for determining the stability of a given equilibrium point of the unilaterally constrained structural system, which is subjected to the static load. We deal with the three problems in mechanics sharing the common mathematical properties: (i) structures containing no‐compression cables; (ii) frictionless contacts; and (iii) elastic–plastic trusses with non‐negative hardening. It is shown that the stability of a given equilibrium point of these structures can be determined by solving a maximization problem of a convex function over a convex set. On the basis of the difference of convex functions optimization, we propose an algorithm to solve the stability determination problem, at each iteration of which a second‐order cone programming problem is to be solved. The problems presented are solved for various structures to determine the stability of given equilibrium points. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
10.
In this paper a study is performed on application of two recovery methods, i.e. superconvergent patch recovery (SPR) and the recovery by equilibrium of patches (REP), to plate problems. The two recovery methods have been recognized to give similar results in adaptive solutions of two dimensional stress problems. While the former applies a least square fit over a set of values at the so called superconvergent points, the latter does not need any knowledge of such points and thus has a wider application especially in non‐linear problems. The formulation of REP is extended to Reissner–Mindlin plate problems. The convergence rates of the recovered fields of the gradients obtained from application of the two methods are compared using series of regular triangular and rectangular meshes for thick and thin plate solution cases. Assumed strain formulation based elements, i.e. the elements formulated by mixed interpolation of tensorial components, as well as conventional from of elements based on selective integration schemes are employed for the study. In order to investigate the possibility of any improvement in the results by adding equilibrium constraints to SPR, as some authors suggest for simple two‐dimensional problems, some weighted forms of such conditions are designed and added to the formulation. Comprehensive study has been given first by varying the weight terms to obtain the best enhanced results and then using the optimal values to investigate the effects of the constraints on the rate of convergence. It is observed that despite of the cost of this approach, due to the coupling of the gradient terms, no significant improvement is achieved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
In the optimal plastic design of mechanical structures one has to minimize a certain cost function under the equilibrium equation, the yield condition and some additional simple constraints, like box constraints. A basic problem is that the model parameters and the external loads are random variables with a certain probability distribution. In order to get reliable/robust optimal designs with respect to random parameter variations, by using stochastic optimization methods, the original random structural optimization problem must be replaced by an appropriate deterministic substitute problem. Starting from the equilibrium equation and the yield condition, the problem can be described in the framework of stochastic (linear) programming problems with ‘complete fixed recourse’. The main properties of this class of substitute problems are discussed, especially the ‘dual decomposition’ data structure which enables the use of very efficient special purpose LP-solvers.  相似文献   

12.
A number of recent papers (see, e.g. (Int. J. Mech. Sci. 2007; 49 :454–465; Eur. J. Mech. A/Solids 2008; 27 :859–881; Eng. Struct. 2008; 30 :664–674; Int. J. Mech. Sci. 2009; 51 :179–191)) have shown that classical limit analysis can be extended to incorporate such important features as geometric non‐linearity, softening and various so‐called ductility constraints. The generic formulation takes the form of a challenging (nonconvex and nonsmooth) optimization problem referred to in the mathematical programming literature as a mathematical program with equilibrium constraints (MPEC). Similar to a classical limit analysis, the aim is to compute in a single step a bound (upper bound, in the case of the extended problem) to the maximum load. The solution algorithm so far proposed to solve the MPEC is to convert it into an iterative non‐linear programming problem and attempts to process this using a standard non‐linear optimizer. Motivated by the fact that no method is guaranteed to solve such MPECs and by the need to avoid the use of an optimization approach, which is unfamiliar to most practising engineers, we propose, in the present paper, a novel numerical scheme to solve the MPEC as a constrained non‐linear system of equations. We illustrate the application of this approach using the simple class of elastoplastic softening skeletal structures for which certain ductility conditions are prescribed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The formulation of limit analysis by means of the finite element method leads to an optimization problem with a large number of variables and constraints. Here we present a method for obtaining strict lower bound solutions using second‐order cone programming (SOCP), for which efficient primal‐dual interior‐point algorithms have recently been developed. Following a review of previous work, we provide a brief introduction to SOCP and describe how lower bound limit analysis can be formulated in this way. Some methods for exploiting the data structure of the problem are also described, including an efficient strategy for detecting and removing linearly dependent constraints at the assembly stage. The benefits of employing SOCP are then illustrated with numerical examples. Through the use of an effective algorithm/software, very large optimization problems with up to 700 000 variables are solved in minutes on a desktop machine. The numerical examples concern plane strain conditions and the Mohr–Coulomb criterion, however we show that SOCP can also be applied to any other problem of lower bound limit analysis involving a yield function with a conic quadratic form (notable examples being the Drucker–Prager criterion in 2D or 3D, and Nielsen's criterion for plates). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
不定二次约束二次规划问题广泛应用于芯片设计、无线通信网络、财政金融和众多工程实际问题.目前尚没有通用的全局收敛准则,这使得求解该问题的全局最优解面临着极大挑战.本文使用矩阵的初等变换技巧将原问题转化为等价双线性规划问题,基于等价问题的特征和线性化松弛技巧构造了等价问题的松弛线性规划,通过求解一系列松弛规划问题的最优解逐步逼近原问题的全局最优解.证明了算法的全局收敛性,并进行数值对比和随机实验,实验结果表明算法高效可行.  相似文献   

15.
The method of moving asymptotes (MMA) and its globally convergent extension SCP (sequential convex programming) are known to work well in the context of structural optimization. The two main reasons are that the approximation scheme used for the objective function and the constraints fits very well to these applications and that at an iteration point a local optimization model is used such that additional expensive function and gradient evaluations of the original problem are avoided. The subproblems that occur in both methods are special nonlinear convex programs and have traditionally been solved using a dual approach. This is now replaced by an interior point approach. The latter one is more suitable for large problems because sparsity properties of the original problem can be preserved and the separability property of the approximation functions is exploited. The effectiveness of the new method is demonstrated by a few examples dealing with problems of structural optimization.  相似文献   

16.
Various mathematical programming methods for structural optimization are studied. In a companion paper, these methods have been studied based on certain theoretical considerations. In this paper, the methods are studied based on solving a set of test problems. The methods that are studied include recursive QP, feasible directions, gradient projection, SUMT and multiplier methods. Various computer codes have been developed, and are studied together with some existing programs such as CONMIN and OPTDYN. The test problems considered have 3–47 design variables and 3–252 constraints. The evaluation criteria consist of studying the accuracy, reliability and efficiency of a code. It turns out that globally convergent algorithms (multiplier methods, in particular) are very reliable but not efficient. Primal algorithms (like CONMIN), which are not proved to be globally convergent, are efficient but not reliable.  相似文献   

17.
Structural robust optimization problems are often solved via the so‐called Bi‐level approach. This solution procedure often involves large computational efforts and sometimes its convergence properties are not so good because of the non‐smooth nature of the Bi‐level formulation. Another problem associated with the traditional Bi‐level approach is that the confidence of the robustness of the obtained solutions cannot be fully assured at least theoretically. In the present paper, confidence single‐level non‐linear semidefinite programming (NLSDP) formulations for structural robust optimization problems under stiffness uncertainties are proposed. This is achieved by using some tools such as Sprocedure and quadratic embedding for convex analysis. The resulted NLSDP problems are solved using the modified augmented Lagrange multiplier method which has sound mathematical properties. Numerical examples show that confidence robust optimal solutions can be obtained with the proposed approach effectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Heuristic methods, such as tabu search, are efficient for global optimizations. Most studies, however, have focused on constraint‐free optimizations. Penalty functions are commonly used to deal with constraints for global optimization algorithms in dealing with constraints. This is sometimes inefficient, especially for equality constraints, as it is difficult to keep the global search within the feasible region by purely adding a penalty to the objective function. A combined global and local search method is proposed in this paper to deal with constrained optimizations. It is demonstrated by combining continuous tabu search (CTS) and sequential quadratic programming (SQP) methods. First, a nested inner‐ and outer‐loop method is presented to lead the search within the feasible region. SQP, a typical local search method, is used to quickly solve a non‐linear programming purely for constraints in the inner loop and provides feasible neighbors for the outer loop. CTS, in the outer loop, is used to seek for the global optimal. Finally, another local search using SQP is conducted with the results of CTS as initials to refine the global search results. Efficiency is demonstrated by a number of benchmark problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
It well known that multimodal instability is an event particularly relevant in structural optimization. Here, in the context of non‐linear stability theory, an exact method is developed for minimum weight design of elastic structures with multimodal buckling constraints. Given an initial design, the method generates a sequence of improved designs by determining a sequence of critical equilibrium points related to decreasing values of the structural weight. Multimodal buckling constraints are imposed without repeatedly solving an eigenvalue problem, and the difficulties related to the non‐differentiability in the common sense of state variables in multimodal critical states, are overcome by means of the Lagrange multiplier method. Further constraints impose that only the first critical equilibrium states (local maxima or bifurcation points) on the initial equilibrium path of the actual designs are taken into account. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Chance constrained optimization problems in engineering applications possess highly nonlinear process models and non-convex structures. As a result, solving a nonlinear non-convex chance constrained optimization (CCOPT) problem remains as a challenging task. The major difficulty lies in the evaluation of probability values and gradients of inequality constraints which are nonlinear functions of stochastic variables. This article proposes a novel analytic approximation to improve the tractability of smooth non-convex chance constraints. The approximation uses a smooth parametric function to define a sequence of smooth nonlinear programs (NLPs). The sequence of optimal solutions of these NLPs remains always feasible and converges to the solution set of the CCOPT problem. Furthermore, Karush–Kuhn–Tucker (KKT) points of the approximating problems converge to a subset of KKT points of the CCOPT problem. Another feature of this approach is that it can handle uncertainties with both Gaussian and/or non-Gaussian distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号