首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
热塑性聚氨酯与聚氯乙烯共混研究进展   总被引:5,自引:1,他引:5  
叶成兵  张军 《中国塑料》2003,17(10):1-7
综述了热塑性聚氨酯与聚氯乙烯共混改性研究进展,重点介绍了热塑性聚氨酯与聚氯乙烯共混物的相容性、共混方式、热塑性聚氨酯的类型和组分、助剂和第三组分聚合物等对共混物性能的影响及其应用。  相似文献   

2.
PVC/TPU/NBR三元共混物的制备及性能研究   总被引:2,自引:0,他引:2  
张军  叶成兵  周圣中 《橡胶工业》2006,53(4):197-202
对PVC/热塑性聚氨酯(TPU)/SR三元共混物的性能进行研究,重点讨论NBR品种、TPU/NBR并用比、PVC聚合度、增塑剂DOP和硫化剂DCP用量对PVC/TPU/NBR三元共混物性能的影响。结果表明。PVC/TPU/NBR-3604三元共混物的物理性能较优;PVC/TPU/NBR-3604三元共混物的拉断伸长率和拉断永久变形均随着PVC聚合度的增大基本呈上升趋势;随着增塑剂DOP用量的增大,共混物的邵尔A型硬度、拉伸强度、撕裂强度和拉断永久变形均基本呈下降趋势,拉断伸长率增大;随着硫化剂DCP用量的增大。共混物的拉伸强度和拉断伸长率变化不大,撕裂强度基本呈逐渐减小的趋势。不同PVC/TPU/SR三元共混物的扫描电子显微镜照片表明,NBR与PVC和TPU的相容性较好。  相似文献   

3.
热塑性聚氨酯弹性体/氯化聚乙烯共混体系的研究   总被引:2,自引:3,他引:2  
张晓燕  赵鸣山 《弹性体》1996,6(2):13-16
选用CPE和CPE/PVC为改性剂.用双辊熔融共混的方式对TPU的共混改性进行了系统的研究,对TPU/CPE和TPU/CPE/PVC共混体系的性能进行了测试分析及对比。结果表明:选择适宜的TPU种类和CPE、CPE/PVC分别组成二元和三元共混体系,能明显改善TPU的加工特性,并且基本保待了TPU优良的耐油性和耐寒性。  相似文献   

4.
In this work, the compatibility of blends of plasticized poly(vinyl chloride) (p‐PVC) and thermoplastic polyurethane (TPU) was investigated using a dynamic mechanical analyzer and scanning electron microscopy. Two kinds of TPU with different ratios of hard to soft segments, i.e., TPU90 and TPU70 were compared. p‐PVC/TPU90 and p‐PVC/TPU70 blends with variable weight ratios (100/0, 90/10, 80/20, 70/30, 60/40, 50/50, 0/100) were prepared by melt blending. PVC was plasticized with 40 phr of dioctyl phthalate. It was found that TPU with a lower hard segment (i.e., TPU70) is more compatible with plasticized PVC than TPU with a higher hard segment (i.e., TPU90) in over the composition ranges examined. It was concluded that the compatibility of plasticized PVC and TPU are dependent on the ratio of hard to soft segments in TPU. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 415–422, 1999  相似文献   

5.
高聚合度PVC/TPU共混物的制备与研究   总被引:4,自引:2,他引:4  
本文研究了采用高聚合度聚氯乙烯(PVC)和热塑性聚氨酯(TPU)为主体材料制备高聚合度PVC/TPU共混物的过程,讨论了高聚合度PVC/TPU并用比、填料、增塑剂、共混工艺等因素对高聚合度PVC/TPU共混物性能的影响。  相似文献   

6.
PVC/TPU合金制备及性能研究   总被引:7,自引:0,他引:7  
选择热塑性聚氨酯弹性体(TPU)与悬浮法生产的聚氯乙烯(PVC)制备共混合金。讨论了两种不同类型的TPU与PVC共混材料的力学性能以及不同配比、助剂和工艺条件对共混合金力学性能的影响,在此基础上对体系的流变性能进行了研究。试验结果表明:聚酯型TPU与PVC合金的力学性能优于聚醚型TPU合金。当PVC/TPU(聚酯型)为100/10(质量比)时,共混体系综合性能最好。TPU对PVC具有增韧与增塑两种作用,可制得力学性能优良的合金。  相似文献   

7.
热塑性聚氨酯与聚氯乙烯共混改性研究   总被引:4,自引:0,他引:4  
采用机械共混法制备了热塑性聚氨酯(TPU)与聚氯乙烯(PVC)共混物。探讨了共混比对TPU/PVC共混物性能的影响,优化出TPU/PVC共混比30/70(质量比),在此基础上研究了增塑剂、热稳定剂、填料对TPU/PVC共混物力学性能、流变性能和耐油、耐溶剂性能的影响。研究结果表明,TPU/PVC共混物的力学性能在共混时有协同作用,耐油、耐溶剂性均较好,从成本和实用两方面出发,选择TPU/PVC=30/70共混比更有实用性。随增塑剂DOP的增加,共混物的力学性能呈下降趋势。在所选热稳定剂中,以硬脂酸钙制得共混物的力学性能最好;在所选填料中,白炭黑的补强效果最好。扫描电镜观察共混物的微观结构显示,TPU/PVC共混比为30/70有较好的相容性,这与力学性能结果相一致。TGA分析显示,TPU的加入提高了共混物的热稳定性。红外光谱分析表明,TPU和PVC共混只是一个简单的物理共混过程。  相似文献   

8.
TPU与CPE、HPVC共混物的研究   总被引:2,自引:1,他引:1  
邬素华 《中国塑料》2001,15(5):36-38
以CPE和CPE/HPVC为改性剂,用熔融共混的方式对TPU的共混体系进行了系统的研究。对TPU/CPE和TPU/CPE/HPVC共混体系的力学、耐寒及流变性能进行了测试及分析。实验结果表明:CPE及CPE/HPVC的加入,虽使体系的力学性能有所降低,但能明显改善TPU的加工性能,并且基本保持了TPU优异的耐寒性。  相似文献   

9.
The morphology and helium‐barrier properties of thermoplastic polyurethane (TPU)/ethylene‐vinyl alcohol (EVOH) blends with and without dicumyl peroxide (DCP) were investigated by melting blending. A lamellar dispersion of EVOH with good helium‐barrier properties was observed in the TPU matrix with DCP. The evolution of the morphology of the blends is mainly related to the variation of the viscosity ratio between the dispersed phase and the matrix phase. Compared with pure TPU, lamellar morphology increased the helium‐barrier properties of the TPU/EVOH (60/40) blend by as much as 10‐fold. We also explored the effects of composition, DCP content, and blending sequence on the morphology and helium‐barrier properties of the TPU/EVOH blends. The morphology of the blends ranged from a droplet‐matrix to a lamellar structure. We determined the optimum amount of DCP to improve the helium barrier of the blends. The helium‐barrier properties of the blends prepared by direct blending were superior to those of the blends prepared by two‐segment blending, and the blends prepared by direct blending exhibited a well‐developed lamellar morphology. We compared the permeability of the samples with the theoretical results to explain the relationship between morphology and helium‐barrier properties. POLYM. ENG. SCI., 56:922–931, 2016. © 2016 Society of Plastics Engineers  相似文献   

10.
Few thermoplastic polyurethane (TPU) blending materials are reported to tune shape‐memory capability, self‐healing ability, and recyclability as well as mechanical property due to the different requirement of phase morphologies. This work focuses on how reversible epoxy domains affect the structures and properties of TPUs that contain disulfide bonds in main chains. The blended epoxy oligomers with dangling furan groups are miscible with the TPU. Self‐healing efficiency can be improved by such miscible epoxy oligomers that are also beneficial for shape recovery but harmful for shape fixation. In the presence of bis(4‐maleimidophenyl)methane (BMI), crosslinked epoxy domains phase separate from the TPU matrix to form microscale domains after the Diels–Alder (DA) reaction between furan groups and maleimide groups in BMI. Elastic modulus and tensile strength of TPU are greatly improved in comparison with pristine TPU and TPU/epoxy blends without BMI. The phase‐separated domains deteriorate the self‐healing, and the presence of phase‐separated microdomains facilitates the shape fixation but deteriorates the shape recovery. This work is not only useful to further understand the relation between structures of polymer blends with intelligent features, but also offers a useful approach to adjust the properties and capabilities of TPU in a cost‐effective manner.  相似文献   

11.
Graphene sheets with a range of unusual properties and thermoplastic polyurethane (TPU ) were combined to modify polyvinyl chloride (PVC ), and the enhanced properties such as flexibility, thermal stability and mechanical properties of the PVC were investigated. In order to avoid the C ? Cl bonds in PVC being weakened, graphene was incorporated into TPU in the melting state first and then this TPU was employed as a modifier to enhance and plasticize PVC in another melt blending step. In comparison with the ternary blending method, this step‐by‐step melt blending method was more efficient and convenient. The distribution of graphene sheets in the polymer matrix is uniform and no C ? Cl bond weakened effect can be observed. Due to the similar polarity, TPU showed good compatibility with PVC and its plasticizing effect allowed a broader range of low temperature flexibility of the modified PVC matrix. Moreover, other properties of the resultant PVC matrix (PTG ‐x ) including mechanical properties, thermal stability and plasticizer migration resistance were all found to be improved. With innovative applications in mind, the development of new graphene‐based materials will certainly lead to many future advances in science and technology. © 2017 Society of Chemical Industry  相似文献   

12.
Chlorinated polypropylene (CPP) as rigid organic particles and chlorinated polyethylene (CPE) as elastomer were used to modify the properties of poly(vinyl chloride) (PVC) by melt blending. Both mechanical and rheological properties of the PVC blends were investigated. The submicroscopic morphology of the blends was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results demonstrate that when the weight ratio of CPE to CPP is about 6 : 1, a sample with the best impact strength and without obvious decline in tensile strength can be obtained. The impact strength correlates well with SEM morphologies, and TEM micrographs in the necking of the tensile specimen indicate that a cold‐drawing deformation of rigid particles happens as reported by T. Kurauchi and T. Ohta (J Mater Sci 1984, 19, 1699). Therefore, a conclusion can be drawn that CPP particles acting similar to elastic particles can toughen PVC, and the cold‐drawing deformation is the primary reason for toughening the PVC blends. In addition, the addition of CPP can promote the processibility of PVC ternary blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2478–2483, 2003  相似文献   

13.
PVC抗静电材料的研究   总被引:7,自引:2,他引:7  
邬素华  文志红 《塑料》2005,34(4):45-47
选用导电炭黑及热塑性聚氨酯弹性体(TPU)、丁腈橡胶(P83)等改性剂对聚氯乙烯(PVC)进行抗静电及增韧研究,测试及分析了PVC共混体系的电性能、机械性能及耐热性能。实验结果表明:添加一定量的导电炭黑能明显提高材料的抗静电性能,但其冲击性能也随导电炭黑加入量的增加而下降,通过加入改性剂可改善体系的韧性。PVC/炭黑/TPU体系具有较高的抗静电效果及综合性能。  相似文献   

14.
The rheological behavior, morphologies, and tensile properties of reactively compatibilized PVDF/TPU blends are reported. Using PVDF‐g‐AAc as the compatibilizer, PVDF/TPU 90/10 and 10/90 blends are prepared. The carboxylic acid groups of PVDF‐g‐AAc react with the urethane linkages of TPU during melt blending to generate in situ PVDF‐g‐AAc‐g‐TPU which leads to compatibilization of PVDF/TPU blends. The introduction of PVDF‐g‐AAc into the PVDF/TPU blends causes an increase in viscosity. The rheological behavior of the compatibilized PVDF/TPU 90/10 and 10/90 blends are well described by the generalized Zener model. The addition of the compatibilizer PVDF‐g‐AAc reduces the dispersed‐phase domain size and narrows the size distribution. ?Author: The summary has been shortened to comply with the maximum of 700 characters. Pls check/confirm changes!?

  相似文献   


15.
In this study, we prepared short‐carbon‐fiber (CF)‐reinforced poly(lactic acid) (PLA)–thermoplastic polyurethane (TPU) blends by melt blending. The effects of the initial fiber length and content on the morphologies and thermal, rheological, and mechanical properties of the composites were systematically investigated. We found that the mechanical properties of the composites were almost unaffected by the fiber initial length. However, with increasing fiber content, the stiffness and toughness values of the blends were both enhanced because of the formation of a TPU‐mediated CF network. With the incorporation of 20 wt % CFs into the PLA–TPU blends, the tensile strength was increased by 70.7%, the flexural modulus was increased by 184%, and the impact strength was increased by 50.4%. Compared with that of the neat PLA, the impact strength of the CF‐reinforced composites increased up to 1.92 times. For the performance in three‐dimensional printing, excellent mechanical properties and a good‐quality appearance were simultaneously obtained when we printed the composites with a thin layer thickness. Our results provide insight into the relationship among the CFs, phase structure, and performance, as we achieved a good stiffness–toughness balance in the PLA–TPU–CF ternary composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46483.  相似文献   

16.
Commercially available organosilane (3‐glycidoxypropyltrimethoxysilane (GPTMS)) coupling agent was used to treat talc in order to improve the affinity relative between the filler and the polymer in composites as well as filler and polymer in the thermoplastic polyurethane/polypropylene (TPU/PP) blends (talc content was 5 wt%). The talc particles were first modified with GPTMS and then introduced into TPU, PP as well as TPU/PP blends with different weight ratios of polymers using blending method and subsequently injection molded in a hydraulic press. The aim was to report the effect of silane coupling agent on the thermal and morphological properties of talc filled composites and blends. The results showed that the thermal properties of the TPU, PP composites and TPU/PP blends were improved with the addition of silane treated talc (higher melting (Tm), crystallization (Tc) temperatures and degree of crystallinity (χc)). The glass transition temperature (Tg) obtained by dynamic mechanical analysis (DMA) of the TPU soft segments in TPU/PP blends increased with the addition of untreated and silane treated talc due to lower mobility of the soft segments in TPU and better miscibility of TPU and PP. TPU/PP blends with the silane treated talc show better thermal stability than the TPU/PP blends with untreated talc. POLYM. ENG. SCI., 55:1920–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
Blends of polyvinyl chloride/epoxidized natural rubber (PVC/ENR) blends were studied. Their rheological properties were studied with a Brabrender Plasticorder. It was found that the rheological properties of any PVC/ENR blends are governed by their blending conditions. To ensure homogenous PVC/ENR blends, adequate and suitable blending conditions must be utilized. PVC thermoplastics phases enhances rigidity while ENR rubbery phases imparts flexibility and processability to the blends. With premixing, Ba/Cd/Zn-based PVC stabilizer is effective in stabilizing the PVC/ENR blends. Their properties are further enhanced by the addition of curatives.  相似文献   

18.
The impact properties of core‐shell acrylate (CS‐ACR)/chlorinated polyethylene (CPE)/poly(vinyl chloride) (PVC) blends under different temperatures were investigated. The fracture surface morphologies of the blends were observed by scanning electron microscopy (SEM). The results show that there exists significant synergistic effect between CS‐ACR particles and CPE in toughening PVC, and the impact properties of the blends generally correlate well with SEM morphologies. Besides, with increasing CS‐ACR content, ductile–brittle transition point of the ternary blends remarkably shifts to a lower temperature. Dynamic mechanical analysis exhibited that intensity and area of low‐temperature tan δ peaks of the CPE/PVC blends increase obviously after the addition of CS‐ACR particles, which to some extent are just in line with the changes in impact strength and ductile–brittle transition point of the blends. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

19.
In this article, we have examined the physical and mechanical properties of poly(vinyl chloride) (PVC)/α‐methyl‐styrene‐acrylonitrile (αMSAN; 31 wt % AN concentrations) blends with different blend ratios. And, we also examined the effect of the molecular weights of PVC on the miscibility and material properties of the blends prepared by melt extrusion blending. Our results showed that the PVC/αMSAN blends have good processing properties and good miscibility over all blend ratios because of the strong interaction between PVC and αMSAN. And, the blends showed enhanced mechanical and thermal properties. In addition, high molecular weight PVC showed reasonable processability when melt blended with αMSAN, which resulted in enhanced mechanical and physical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
主要研究了用刚果红法测有机锡热稳定剂对热塑性聚氨酯,聚氯乙烯共混物的脱氯化氢的影响。重点探索热塑性聚氨酯在不同有机锡稳定剂作用下对共混物脱氯化氢的影响,同时还比较了硫醇和非硫醇两大有机锡体系的稳定作用。此外,还探索了有机锡与金属皂稳定剂和环氧大豆油并用对共混物的作用。研究结果表明:在共混体系中,热塑性聚氨酯在聚氯乙烯脱氯化氢过程中不仅起简单的稀释作用,还能促进聚氯乙烯分解。热稳定剂有效地抑制共混物中聚氯乙烯脱氯化氢的速度,在所选的三种有机锡稳定剂当中,硫醇系要好于非硫醇系。以395A和T-137作用效果最好。DBTL和CaSt2、环氧大豆油复合,都具有协同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号