首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domain switching is the cause of significant non‐linearity in the response of piezoelectric materials to mechanical and electrical effects. In this paper, the response of piezoelectric solids is formulated by coupling thermal, electrical, and mechanical effects. The constitutive equations are non‐linear. Moreover, due to the domain switching phenomenon, the resulting governing equations become highly non‐linear. The corresponding non‐linear finite element equations are derived and solved by using an incremental technique. The developed formulation is first verified against a number of benchmark problems for which a closed‐form solution exists. Next, a cantilever beam made of PZT‐4 is studied to evaluate the effect of domain switching on the overall force–displacement response of the beam. A number of interesting observations are made with respect to the extent of non‐linearity and its progressive spread as the load on the beam increases. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Metamodels are widely used to facilitate the analysis and optimization of engineering systems that involve computationally expensive simulations. Kriging is a metamodelling technique that is well known for its ability to build surrogate models of responses with non‐linear behaviour. However, the assumption of a stationary covariance structure underlying Kriging does not hold in situations where the level of smoothness of a response varies significantly. Although non‐stationary Gaussian process models have been studied for years in statistics and geostatistics communities, this has largely been for physical experimental data in relatively low dimensions. In this paper, the non‐stationary covariance structure is incorporated into Kriging modelling for computer simulations. To represent the non‐stationary covariance structure, we adopt a non‐linear mapping approach based on parameterized density functions. To avoid over‐parameterizing for the high dimension problems typical of engineering design, we propose a modified version of the non‐linear map approach, with a sparser, yet flexible, parameterization. The effectiveness of the proposed method is demonstrated through both mathematical and engineering examples. The robustness of the method is verified by testing multiple functions under various sampling settings. We also demonstrate that our method is effective in quantifying prediction uncertainty associated with the use of metamodels. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a multi‐scale analysis method for heat transfer in heterogeneous solids is presented. The principles of the method rely on a two‐scale computational homogenization approach which is applied successfully for the stress analysis of multi‐phase solids under purely mechanical loading. The present paper extends this methodology to heat conduction problems. The flexibility of the method permits one to take into account local microstructural heterogeneities and thermal anisotropy, including non‐linearities which might arise at some stage of the thermal loading history. The resulting complex microstructural response is transferred back to the macro level in a consistent manner. A proper macro to micro transition is established in terms of the applied boundary conditions and likewise a micro to macro transition is formulated in the form of consistent averaging relations. Imposition of boundary conditions and extraction of macroscopic quantities are elaborated in detail. A nested finite element solution procedure is outlined, and the effectiveness of the approach is demonstrated by some illustrative example problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This paper focuses on the development of an unconditionally stable time‐integration algorithm for multibody dynamics that does not artificially dissipate energy. Unconditional stability is sought to alleviate any stability restrictions on the integration step size, while energy conservation is important for the accuracy of long‐term simulations. In multibody system analysis, the time‐integration scheme is complemented by a choice of co‐ordinates that define the kinematics of the system. As such, the current approach uses a non‐dissipative implicit Newmark method to integrate the equations of motion defined in terms of the independent joint co‐ordinates of the system. In order to extend the unconditional stability of the implicit Newmark method to non‐linear dynamic systems, a discrete energy balance is enforced. This constraint, however, yields spurious oscillations in the computed accelerations and therefore, a new acceleration corrector is developed to eliminate these instabilities and hence retain unconditional stability in an energy sense. An additional benefit of employing the non‐linearly implicit time‐integration method is that it allows for an efficient design sensitivity analysis. In this paper, design sensitivities computed via the direct differentiation method are used for mechanism performance optimization. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
We present a method to numerically calculate a non‐reflecting boundary condition which is applicable to atomistic, continuum and coupled multiscale atomistic/continuum simulations. The method is based on the assumption that the forces near the domain boundary can be well represented as a linear function of the displacements, and utilizes standard Laplace and Fourier transform techniques to eliminate the unnecessary degrees of freedom. The eliminated degrees of freedom are accounted for in a time‐history kernel that can be calculated for arbitrary crystal lattices and interatomic potentials, or regular finite element meshes using an automated numerical procedure. The new theoretical developments presented in this work allow the application of the method to non‐nearest neighbour atomic interactions; it is also demonstrated that the identical procedure can be used for finite element and mesh‐free simulations. We illustrate the effectiveness of the method on a one‐dimensional model problem, and calculate the time‐history kernel for FCC gold using the embedded atom method (EAM). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
A time‐discontinuous Galerkin finite element method (DGFEM) for dynamics and wave propagation in non‐linear solids and saturated porous media is presented. The main distinct characteristic of the proposed DGFEM is that the specific P3–P1 interpolation approximation, which uses piecewise cubic (Hermite's polynomial) and linear interpolations for both displacements and velocities, in the time domain is particularly proposed. Consequently, continuity of the displacement vector at each discrete time instant is exactly ensured, whereas discontinuity of the velocity vector at the discrete time levels still remains. The computational cost is then obviously saved, particularly in the materially non‐linear problems, as compared with that required for the existing DGFEM. Both the implicit and explicit algorithms are developed to solve the derived formulations for linear and materially non‐linear problems. Numerical results illustrate good performance of the present method in eliminating spurious numerical oscillations and in providing much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Most methods employed in the numerical solution of contact problems in finite element simulations rely on equality‐based optimization methods. Typically, a gap function which is non‐differentiable at the point of contact is used in these kind of approaches. The gap function can be seen as the Macaulay bracket of some distance function, where the latter is differentiable at the point of contact. In this article, we propose to use the distance function directly instead of using the gap function. This will give rise to a formulation involving inequality constraints. This approach eliminates the artificially introduced non‐differentiability. To this end we propose a barrier algorithm as the method of choice to solve the problem. The method originates in optimization literature, where convergence proofs for the method are available. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, an Eulerian, finite‐volume method is developed for the numerical simulation of elastic–plastic response of compressible solid materials with arbitrary equation of state (EOS) under impact loading. The governing equations of mass, momentum, and energy along with evolution equations for deviatoric stresses are solved in Eulerian conservation law form. Since the position of material boundaries is determined implicitly by Eulerian schemes, the solution procedure is split into two separate subproblems, which are solved sequentially at each time step. First, the conserved variables are evolved in time with appropriate boundary conditions at the material interfaces. In the present work a fourth‐order central weighted essentially non‐oscillatory shock‐capturing method that was developed for gas dynamics has been extended to high strain rate solids problems. In this method fluxes are determined on a staggered grid at places where solution is smooth. As a result, the method does not rely on the solution of Riemann problems but enjoys the flexibility of using any type of EOS. Boundary conditions at material interfaces are also treated by a special ghost cell approach. Then in the second subproblem, the position of material interfaces is advanced to the new time using a particle level set method. A fifth‐order Godunov‐type central scheme is used to solve the Hamilton–Jacobi equation of level sets in two space dimensions. The capabilities of the proposed method are evaluated at the end by comparing numerical results with the experimental results and the reported benchmark solutions for the Taylor rod impact, spherical groove jetting, and void collapse problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This paper introduces a non‐oscillatory method, the finite element flux‐corrected transport (FE‐FCT) method for spallation studies. This method includes the implementation of a one‐dimensional FCT algorithm into a total Lagrangian finite element method. Consequently, the FE‐FCT method can efficiently eliminate fluctuations behind shock wave fronts without smearing them. In multidimensional simulations, the one‐dimensional FCT algorithm is used on each grid line of the structured meshes to correct the corresponding component of nodal velocities separately. The requirement of structured meshes is satisfied by using an implicit function so that arbitrary boundaries of the simulated object can be described. In this paper, the proposed FE‐FCT method is applied in spallation studies. One‐ and two‐dimensional examples show this non‐oscillatory method could be one of the candidates to accurately predict spallation and the spall thickness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an enriched meshless method for fracture analysis of cracks in homogeneous, isotropic, non‐linear‐elastic, two‐dimensional solids, subject to mode‐I loading conditions. The method involves an element‐free Galerkin formulation and two new enriched basis functions (Types I and II) to capture the Hutchinson–Rice–Rosengren singularity field in non‐linear fracture mechanics. The Type I enriched basis function can be viewed as a generalized enriched basis function, which degenerates to the linear‐elastic basis function when the material hardening exponent is unity. The Type II enriched basis function entails further improvements of the Type I basis function by adding trigonometric functions. Four numerical examples are presented to illustrate the proposed method. The boundary layer analysis indicates that the crack‐tip field predicted by using the proposed basis functions matches with the theoretical solution very well in the whole region considered, whether for the near‐tip asymptotic field or for the far‐tip elastic field. Numerical analyses of standard fracture specimens by the proposed meshless method also yield accurate estimates of the J‐integral for the applied load intensities and material properties considered. Also, the crack‐mouth opening displacement evaluated by the proposed meshless method is in good agreement with finite element results. Furthermore, the meshless results show excellent agreement with the experimental measurements, indicating that the new basis functions are also capable of capturing elastic–plastic deformations at a stress concentration effectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
We propose a new explicit contact algorithm for finite element discretized solids and shells with smooth and non‐smooth geometries. The equations of motion are integrated in time with a predictor‐corrector‐type algorithm. After each predictor step, the impenetrability constraints and the exchange of momenta between the impacting bodies are considered and enforced independently. The geometrically inadmissible penetrations are removed using closest point projections or similar updates. Penetration is measured using the signed volume of intersection described by the contacting surface elements, which is well‐defined for both smooth and non‐smooth geometries. For computing the instantaneous velocity changes that occur during the impact event, we introduce the decomposition contact response method. This enables the closed‐form solution of the jump equations at impact, and applies to non‐frictional as well as frictional contact, as exemplified by the Coulomb frictional model. The overall algorithm has excellent momentum and energy conservation characteristics, as several numerical examples demonstrate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we present an improved discrete element method based on the non‐smooth contact dynamics and the bi‐potential concept. The energy dissipated during the collisions is taken into account by means of restitution coefficients. The interaction between particles is modelled by Coulomb unilateral contact law with dry friction which is typically non‐associated: during the contact, the sliding vector is not normal to the friction cone. The main feature of our algorithm is to overcome this difficulty by means of the bi‐potential theory. It leads to an easy implement predictor–corrector scheme involving just an orthogonal projection onto the friction cone. Moreover the convergence test is based on an error estimator in constitutive law using the corner stone inequality of the bipotential. Then we present numerical simulations which show the robustness of our algorithm and the various possibilities of the software ‘MULTICOR’ developed with this approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
We present three velocity‐based updated Lagrangian formulations for standard and quasi‐incompressible hypoelastic‐plastic solids. Three low‐order finite elements are derived and tested for non‐linear solid mechanics problems. The so‐called V‐element is based on a standard velocity approach, while a mixed velocity–pressure formulation is used for the VP and the VPS elements. The two‐field problem is solved via a two‐step Gauss–Seidel partitioned iterative scheme. First, the momentum equations are solved in terms of velocity increments, as for the V‐element. Then, the constitutive relation for the pressure is solved using the updated velocities obtained at the previous step. For the VPS‐element, the formulation is stabilized using the finite calculus method in order to solve problems involving quasi‐incompressible materials. All the solid elements are validated by solving two‐dimensional and three‐dimensional benchmark problems in statics as in dynamics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents an advanced failure surface propagation concept based on the marching cubes algorithm initially proposed in the field of computer graphics and applies it to the embedded finite element method. When modeling three‐dimensional (3D) solids at failure, the propagation of the failure surface representing a crack or shear band should not exhibit a strong sensitivity to the details of the finite element discretization. This results in the need for a propagation of the discrete failure zone through the individual finite elements, which is possible for finite elements with embedded strong discontinuities. Whereas for two‐dimensional calculations the failure zone propagation location is easily predicted by the maximal principal stress direction, more advanced strategies are needed to achieve a smooth failure surface in 3D simulations. An example for such method is the global tracking algorithm, which predicts the crack path by a scalar level set function computed on the basis of the solution of a simplified heat conduction like problem. Its prediction may though lead to various scenarios on how the failure surface may propagate through the individual finite elements. In particular, for a hexahedral eight‐node finite element, 256 such cases exist. To capture all those possibilities, the marching cubes algorithm is combined with the global tracking algorithm and the finite elements with embedded strong discontinuities in this work. In addition, because many of the possible cases result in non‐planar failure surfaces within a single finite element and because the local quantities used to describe the kinematics of the embedded strong discontinuities are physically meaningful in a strict sense only for planar failure surfaces, a remedy for such scenarios is proposed. Various 3D failure propagation simulations outline the performance of the proposed concept. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
A numerical technique for non‐planar three‐dimensional linear elastic crack growth simulations is proposed. This technique couples the extended finite element method (X‐FEM) and the fast marching method (FMM). In crack modeling using X‐FEM, the framework of partition of unity is used to enrich the standard finite element approximation by a discontinuous function and the two‐dimensional asymptotic crack‐tip displacement fields. The initial crack geometry is represented by two level set functions, and subsequently signed distance functions are used to maintain the location of the crack and to compute the enrichment functions that appear in the displacement approximation. Crack modeling is performed without the need to mesh the crack, and crack propagation is simulated without remeshing. Crack growth is conducted using FMM; unlike a level set formulation for interface capturing, no iterations nor any time step restrictions are imposed in the FMM. Planar and non‐planar quasi‐static crack growth simulations are presented to demonstrate the robustness and versatility of the proposed technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A general approach to the dimensional reduction of non‐linear finite element models of solid dynamics is presented. For the Newmark implicit time‐discretization, the computationally most expensive phase is the repeated solution of the system of linear equations for displacement increments. To deal with this, it is shown how the problem can be formulated in an approximation (Ritz) basis of much smaller dimension. Similarly, the explicit Newmark algorithm can be also written in a reduced‐dimension basis, and the computation time savings in that case follow from an increase in the stable time step length. In addition, the empirical eigenvectors are proposed as the basis in which to expand the incremental problem. This basis achieves approximation optimality by using computational data for the response of the full model in time to construct a reduced basis which reproduces the full system in a statistical sense. Because of this ‘global’ time viewpoint, the basis need not be updated as with reduced bases computed from a linearization of the full finite element model. If the dynamics of a finite element model is expressed in terms of a small number of basis vectors, the asymptotic cost of the solution with the reduced model is lowered and optimal scalability of the computational algorithm with the size of the model is achieved. At the same time, numerical experiments indicate that by using reduced models, substantial savings can be achieved even in the pre‐asymptotic range. Furthermore, the algorithm parallelizes very efficiently. The method we present is expected to become a useful tool in applications requiring a large number of repeated non‐linear solid dynamics simulations, such as convergence studies, design optimization, and design of controllers of mechanical systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a computational method for converting a tetrahedral mesh to a prism–tetrahedral hybrid mesh for improved solution accuracy and computational efficiency of finite element analysis. The proposed method performs this conversion by inserting layers of prism elements and deleting tetrahedral elements in sweepable sub‐domains, in which cross‐sections remain topologically identical and geometrically similar along a certain sweeping path. The total number of finite elements is reduced because roughly three tetrahedral elements are converted to one prism element. The solution accuracy of the finite element analysis improves since a prism element yields a more accurate solution than a tetrahedral element due to the presence of higher‐order terms in the shape function. Only previously known method for creating such a prism–tetrahedral hybrid mesh was to manually decompose a target volume into sweepable and non‐sweepable sub‐volumes and mesh each of the sub‐volumes separately. Unlike the previous method, the proposed method starts from a cross‐section of a tetrahedral mesh and replaces the tetrahedral elements with layers of prism elements until prescribed quality criteria can no longer be satisfied. A series of computational fluid dynamics simulations and structural analyses have been conducted, and the results verified a better performance of prism–tetrahedral hybrid mesh. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Experimental and theoretical studies of the self‐propelled motional dynamics of a new genre of catalytic sphere dimer, which comprises a non‐catalytic silica sphere connected to a catalytic platinum sphere, are reported for the first time. Using aqueous hydrogen peroxide as the fuel to effect catalytic propulsion of the sphere dimers, both quasi‐linear and quasi‐circular trajectories are observed in the solution phase and analyzed for different dimensions of the platinum component. In addition, well‐defined rotational motion of these sphere dimers is observed at the solution–substrate interface. The nature of the interaction between the sphere dimer and the substrate in the aqueous hydrogen peroxide phase is discussed. In computer simulations of the sphere dimer in solution and the solution–substrate interface, sphere‐dimer dynamics are simulated using molecular‐dynamics methods and solvent dynamics are modeled by mesoscopic multiparticle collision methods taking hydrodynamic interactions into account. The rotational and translational dynamics of the sphere dimer are found to be in good accord with the predictions of computer simulations.  相似文献   

19.
We propose a method to couple smoothed particle hydrodynamics and finite elements methods for nonlinear transient fluid–structure interaction simulations by adopting different time‐steps depending on the fluid or solid sub‐domains. These developments were motivated by the need to simulate highly non‐linear and sudden phenomena requiring the use of explicit time integrators on both sub‐domains (explicit Newmark for the solid and Runge–Kutta 2 for the fluid). However, due to critical time‐step required for the stability of the explicit time integrators in, it becomes important to be able to integrate each sub‐domain with a different time‐step while respecting the features that a previously developed mono time‐step coupling algorithm offered. For this matter, a dual‐Schur decomposition method originally proposed for structural dynamics was considered, allowing to couple time integrators of the Newmark family with different time‐steps with the use of Lagrange multipliers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

In this article we briefly overview our recent results on non‐linear dynamics of carbon nanotubes (CNT) with special emphasis on the solutions of special kinds—solitons. These solutions are derived analytically for both armchair and zigzag CNTs, and their high stability is supported in MD simulations. We advanced a hypothetical mechanism of soliton generation in CNTs by the action of shock compression, which has been confirmed by means of numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号