首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
We describe a Gauss–Seidel algorithm for optimizing a three‐dimensional unstructured grid so as to conform to a given metric. The objective function for the optimization process is based on the maximum value of an elemental residual measuring the distance of any simplex in the grid to the local target metric. We analyse different possible choices for the objective function, and we highlight their relative merits and deficiencies. Alternative strategies for conducting the optimization are compared and contrasted in terms of resulting grid quality and computational costs. Numerical simulations are used for demonstrating the features of the proposed methodology, and for studying some of its characteristics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
    
A method for the rapid construction of meshes over intersecting triangulated shapes is described. The method is based on an algorithm that automatically generates a surface mesh from intersecting triangulated surfaces by means of Boolean intersection/union operations. After the intersection of individual components is obtained, the exposed surface parts are extracted. The algorithm is intended for rapid interactive construction of non‐trivial surfaces in engineering design, manufacturing, visualization and molecular modelling applications. Techniques to make the method fast and general are described. The proposed algorithm is demonstrated on a number of examples, including intersections of multiple spheres, planes and general engineering shapes, as well as generation of surface and volume meshes around clusters of intersecting components followed by the computation of flow field parameters. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The construction of solution-adapted meshes is addressed within an optimization framework. An approximation of the second spatial derivative of the solution is used to get a suitable metric in the computational domain. A mesh quality is proposed and optimized under this metric, accounting for both the shape and the size of the elements. For this purpose, a topological and geometrical mesh improvement method of high generality is introduced. It is shown that the adaptive algorithm that results recovers optimal convergence rates in singular problems, and that it captures boundary and internal layers in convection-dominated problems. Several important implementation issues are discussed. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
    
We report on results obtained with a metric-driven mesh optimization procedure for simplicial meshes based on the simulated annealing (SA) method. The use of SA improves the chances of removing pathological clusters of bad elements, that have the tendency to lock into frozen configurations in difficult regions of the model such as corners and complex face intersections, prejudicing the overall quality of the final grid. A local version of the algorithm is developed that significantly lowers the computational cost. Numerical examples illustrate the effectiveness of the proposed methodology, which is compared to a classical greedy Gauss–Seidel optimization. Substantial improvement in the quality of the worst elements of the grid is observed for the local simulated annealing optimization. Furthermore, the method appears to be robust to the choice of the algorithmic parameters. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
    
Structured mesh quality optimization methods are extended to optimization of unstructured triangular, quadrilateral, and mixed finite element meshes. New interpretations of well‐known nodally based objective functions are made possible using matrices and matrix norms. The matrix perspective also suggests several new objective functions. Particularly significant is the interpretation of the Oddy metric and the smoothness objective functions in terms of the condition number of the metric tensor and Jacobian matrix, respectively. Objective functions are grouped according to dimensionality to form weighted combinations. A simple unconstrained local optimum is computed using a modified Newton iteration. The optimization approach was implemented in the CUBIT mesh generation code and tested on several problems. Results were compared against several standard element‐based quality measures to demonstrate that good mesh quality can be achieved with nodally based objective functions. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

6.
    
Several extensions and improvements to surface merging procedures based on the extraction of iso‐surfaces from a distance map defined on an adaptive background grid are presented. The main objective is to extend the application of these algorithms to surfaces with sharp edges and corners. In order to deal with objects of different length scales, the initial background grids are created using a Delaunay triangulation method and local voxelizations. A point enrichment technique that introduces points into the background grid along detected surface features such as ridges is used to ensure that these features are preserved in the final merged surface. The surface merging methodology is extended to include other Boolean operations between surface triangulations. The iso‐surface extraction algorithms are modified to obtain the correct iso‐surface for multi‐component objects. The procedures are demonstrated with various examples, ranging from simple geometrical entities to complex engineering applications. The present algorithms allow realistic modelling of a large number of complex engineering geometries using overlapping components defined discretely, i.e. via surface triangulations. This capability is very useful for grid generation starting from data originated in measurements or images. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
    
An algorithm for tetrahedron mesh generation and optimization with respect to a shape and a size criterion is presented. A well distributed set of nodes is first generated by an octree method, and the set is then triangulated. The advancing front technique is used to mesh the whole volume. Emphasis has been placed on management of the front. The method involves priority construction of enhanced quality tetrahedra. Each face is assigned to a front corresponding to the quality of the best tetrahedron which can be constructed. Elements are destroyed in the case of non-convergence. Optimization procedures make local use of the algorithm used to mesh the complete model. Industrial examples of relatively complex volumes are given, demonstrating that a high quality and optimized mesh can be obtained by the proposed method. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
    
Three‐dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high‐quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2×2 matrices do not hold for 3×3 matrices, significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equality in two dimensions of the smoothness and condition number of the Jacobian matrix objective functions does not extend to three dimensions and further, that the equality of the Oddy and condition number of the metric tensor objective functions in two dimensions also fails to extend to three dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non‐dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all‐hexahedral ‘whisker‐weaved’ meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure. Published in 2000 by John Wiley & Sons, Ltd.  相似文献   

9.
A method of generating general tetrahedral meshes suitable for use in viscous flow simulations is proposed. The approach which is followed consists of the initial generation of a number of unstructured layers of highly stretched elements, in the vicinity of solid walls, followed by the discretisation of the remainder of the domain, by a standard advancing front procedure. The numerical performance of the proposed methodology is demonstrated by the generation of meshes suitable for viscous flow analysis over a number of three-dimensional aerodynamic configurations of current practical interest.  相似文献   

10.
    
We present a robust method for generating high‐order nodal tetrahedral curved meshes. The approach consists of modifying an initial linear mesh by first, introducing high‐order nodes, second, displacing the boundary nodes to ensure that they are on the computer‐aided design surface, and third, smoothing and untangling the mesh obtained after the displacement of the boundary nodes to produce a valid curved high‐order mesh. The smoothing algorithm is based on the optimization of a regularized measure of the mesh distortion relative to the original linear mesh. This means that whenever possible, the resulting mesh preserves the geometrical features of the initial linear mesh such as shape, stretching, and size. We present several examples to illustrate the performance of the proposed algorithm. Furthermore, the examples show that the implementation of the optimization problem is robust and capable of handling situations in which the mesh before optimization contains a large number of invalid elements. We consider cases with polynomial approximations up to degree ten, large deformations of the curved boundaries, concave boundaries, and highly stretched boundary layer elements. The meshes obtained are suitable for high‐order finite element analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We propose a new optimization strategy for unstructured meshes that, when coupled with existing automatic generators, produces meshes of high quality for arbitrary domains in 3-D. Our optimizer is based upon a non-differentiable definition of the quality of the mesh which is natural for finite element or finite volume users: the quality of the worst element in the mesh. The dimension of the optimization space is made tractable by restricting, at each iteration, to a suitable neighbourhood of the worst element. Both geometrical (node repositioning) and topological (reconnection) operations are performed. It turns out that the repositioning method is advantageous with respect to both the usual node-by-node techniques and the more recent differentiable optimization methods. Several examples are included that illustrate the efficiency of the optimizer.  相似文献   

12.
13.
    
In this work, a new method for inserting a surface as an internal boundary into an existing unstructured tetrahedral mesh is developed. The surface is discretized by initially placing vertices on its bounding curves, defining a length scale at every location on each boundary curve based on the local underlying mesh, and equidistributing length scale along these curves between vertices. The surface is then sampled based on this boundary discretization, resulting in a surface mesh spaced in a way that is consistent with the initial mesh. The new points are then inserted into the mesh, and local refinement is performed, resulting in a final mesh containing a representation of the surface while preserving mesh quality. The advantage of this algorithm over generating a new mesh from scratch is in allowing for the majority of existing simulation data to be preserved and not have to be interpolated onto the new mesh. This algorithm is demonstrated in two and three dimensions on problems with and without intersections with existing internal boundaries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
    
Mesh smoothing is demonstrated to be an effective means of copying, morphing, and sweeping unstructured quadrilateral surface meshes from a source surface to a target surface. Construction of the smoother in a particular way guarantees that the target mesh will be a ‘copy’ of the source mesh, provided the boundary data of the target surface is a rigid body rotation, translation, and/or uniform scaling of the original source boundary data and provided the proper boundary node correspondence between source and target has been selected. Copying is not restricted to any particular smoother, but can be based on any locally elliptic second‐order operator. When the bounding loops are more general than rigid body transformations the method generates high‐quality, ‘morphed’ meshes. Mesh sweeping, if viewed as a morphing of the source surface to a set of target surfaces, can be effectively performed via this smoothing algorithm. Published in 1999 by John Wiley & Sons, Ltd. This article is a U.S. government work and is in the public domain in the United States.  相似文献   

15.
    
An octree‐based mesh generation method is proposed to create reasonable‐quality, geometry‐adapted unstructured hexahedral meshes automatically from triangulated surface models without any sharp geometrical features. A new, easy‐to‐implement, easy‐to‐understand set of refinement templates is developed to perform local mesh refinement efficiently even for concave refinement domains without creating hanging nodes. A buffer layer is inserted on an octree core mesh to improve the mesh quality significantly. Laplacian‐like smoothing, angle‐based smoothing and local optimization‐based untangling methods are used with certain restrictions to further improve the mesh quality. Several examples are shown to demonstrate the capability of our hexahedral mesh generation method for complex geometries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
    
In this paper, we propose efficient and robust unstructured mesh generation methods based on computed tomography (CT) and magnetic resonance imaging (MRI) data, in order to obtain a patient‐specific geometry for high‐fidelity numerical simulations. Surface extraction from medical images is carried out mainly using open source libraries, including the Insight Segmentation and Registration Toolkit and the Visualization Toolkit, into the form of facet surface representation. To create high‐quality surface meshes, we propose two approaches. One is a direct advancing front method, and the other is a modified decimation method. The former emphasizes the controllability of local mesh density, and the latter enables semi‐automated mesh generation from low‐quality discrete surfaces. An advancing‐front‐based volume meshing method is employed. Our approaches are demonstrated with high‐fidelity tetrahedral meshes around medical geometries extracted from CT/MRI data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
    
With the development of parallel computing architectures, larger and more complex finite element analyses (FEA) are being performed with higher accuracy and smaller execution times. Graphics processing units (GPUs) are one of the major contributors of this computational breakthrough. This work presents a three-stage GPU-based FEA matrix generation strategy with the key idea of decoupling the computation of global matrix indices and values by use of a novel data structure referred to as the neighbor matrix. The first stage computes the neighbor matrix on the GPU based on the unstructured mesh. Using this neighbor matrix, the indices and values of the global matrix are computed separately in the second and third stages. The neighbor matrix is computed for three different element types. Two versions for performing numerical integration and assembly in the same or separate kernels are implemented and simulations are run for different mesh sizes having up to three million degrees of freedom on a single GPU. Comparison with GPU-based parallel implementation from the literature reveals speedup ranging from 4× to 6× for the proposed workload division strategy. Furthermore, the same kernel implementation is found to outperform the separate kernel implementation by 70% to 150% for different element types.  相似文献   

18.
    
The data structure representing a mesh and the operators to create and query such a database play a crucial role in the performance of mesh generation and FE analysis applications. The design of such a database must balance the conflicting requirements of compactness and computational efficiency. In this article, 10 different mesh representations are reviewed for linear tetrahedral and hexahedral meshes. A methodology for calculating the storage and computational costs of mesh representations is presented and the 10 data structures are analysed. Also, a system for ranking different data structures based on their computational and storage costs is devised and the various mesh representations are ranked according to this measure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
N P Weatherill 《Sadhana》1991,16(1):1-45
In recent years there has been much research activity in the field of compressible flow simulation for aerodynamic applications. In the 1970’s and 1980’s the advances in the numerical solution of the Full Potential and Euler equations made, in principle, the inviscid flow simulation around complex aerodynamic shapes possible. At this stage much attention was focused on methods capable of generating meshes on which such calculations could be performed. In this paper an overview is presented of some techniques which have been developed to generate meshes for aerospace applications. Structured mesh generation techniques are discussed and their application to complicated shapes utilising the multiblock approach is highlighted. Unstructured mesh generation methods are also discussed with particular emphasis given to the Delaunay triangulation method. Finally, the advantages and disadvantages of the structured and unstructured approaches are discussed and new work is presented which attempts to utilise both these approaches in an efficient and flexible manner. An erratum to this article is available at .  相似文献   

20.
针对传统有限元法求解Oldroyd-B本构方程时需加入稳定化方案的缺点,本文基于非结构网格给出了统一间断有限元求解框架.该框架包含采用IPDG(interior penalty discontinuous Galerkin)求解质量方程和动量方程,与采用RKDG(Runge-Kutta discontinuous Galerkin)求解本构方程这两个核心.数值结果表明:该方法在求解Oldroyd-B本构方程时无需加入稳定化方案,实施比有限元法简便,且具有较高的计算精度,可有效地模拟包含应力奇异点的复杂粘弹流动问题,进而揭示非牛顿粘弹流动的基本特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号