首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Computers & Structures》1987,27(1):103-110
A geometrically nonlinear dynamic analysis method is presented for frames which may be subjected to finite rotations in three-dimensional space. The proposed method is based on the static geometrically nonlinear analysis method reported by Yoshida et al., in which the governing incremental equilibrium equation is represented by the coordinates after the deformation themselves rather than conventional displacements. The governing dynamic equilibrium equation for each element is obtained from the static equation by adding the inertia term. In the solution procedure, a modified Steffensen's iteration process is introduced and combined with the two-step approximation and iterative correction solution procedure developed for static analysis. A numerical example of a curved cantilever beam under lateral loads indicates the effectiveness of the proposed method in cases with three-dimensional finite rotations. Forced vibration analyses of a two-hinged shallow arch are conducted under centrally concentrated loading with several loading amplitudes. The resulting dynamic buckling load is compared with that given by Gregory and Plaut in 1982, who used Galerkin method, and shows good agreement.  相似文献   

2.
3.
This paper deals with lateral-torsional buckling of beams which have already buckled locally before the occurrence of overall buckling. Due to the weakening effects of local buckling, the stiffness of the beam is reduced. As a result, overall lateral buckling takes place at a lower load than the member would carry in the absence of local buckling. The effective width concept is used in this investigation to account for the post-buckling strength in the buckled compression plate elements of the beam section. A finite element formulation in conjunction with effective width concept is presented. Due to the nonlinearity involved because of local buckling, an iterative procedure is necessary. Search techniques are used to find the load factor. The method combined with an analysis on nonlinear bending moment distribution can be used to analyze the lateral stability problem of locally buckled continuous structure. In this case, both elastic stiffness matrix and geometric stiffness matrix must be revised at each load level. A computer program has been prepared for an IBM 370/165 computer.  相似文献   

4.
The application of finite element analysis to lateral buckling problems, locating the critical points and tracing the postbifurcation path, is treated on the basis of a geometrically nonlinear formulation for a beam with small elastic strain but with possibly large rotations. The existing finite element formulations for thin beams are examined in the aspect of application to bifurcation problems, such as lateral buckling, and the choice of an appropriate rotation parameter for representing incremental or variational rotations in finite element formulations is discussed in relation to locating bifurcation points. This is illustrated through several numerical examples and followed by appropriate discussion.  相似文献   

5.
This work deals with the numerical evaluation of the structural response of simply supported (transversally loaded at mid-span) and cantilever (subjected to tip point loads) beams built from a commercial pultruded I-section GFRP profile. In particular, the paper addresses the beam (i) geometrically linear behaviour in service conditions, (ii) local and lateral-torsional buckling behaviour, and (iii) lateral-torsional post-buckling behaviour, including the effect of the load point of application location. The numerical results are obtained by means of (i) novel Generalised Beam Theory (GBT) beam finite element formulations, able to capture the influence of the load point of application, and (ii) shell finite element analyses carried out in the code Abaqus. These numerical results are compared with (i) the experimental values reported and discussed in the companion paper (Part 1) and (ii) values provided by analytical formulae available in the literature.  相似文献   

6.
The matrix displacement analysis of geometrically nonlinear structures becomes an intricate task as soon as finite elements in space with rotational degrees of freedom are considered. The fundamental reason for these difficulties lies in the non-commutativity of successive finite rotations about fixed axes with different directions. In order to circumvent this difficulty, a new definition of rotations — the so-called semitangential rotations — is introduced in this paper. Our new definition leads to a reformulation of the theory of [1,2]which in itself is clearly consistent and correct.In contrast to rotations about fixed axes these semitangential rotations which correspond to the semitangential torques of Ziegler [3]possess the most important property of being commutative. In this manner, all complexities involved in the standard definition of rotations are avoided ab initio.A specific aspect of this paper is a careful exposition of semitangential torques and rotations, as well as the consequences of the semitangential definitions for the geometrical stiffness of finite elements. In fact, these new definitions permit a very simple and consistent derivation of the geometrical stiffness matrices. Moreover, the semitangential definition automatically leads to a symmetric geometrical stiffness which clearly expresses that the nonlinear strain-displacement relations must satisfy the condition of conservativity of the structure itself — independently of any loading.The general theory of geometrical stiffness matrices as evolved in this paper is applied to beams in space. The consistency of the theory is demonstrated by a large number of numerical examples not only of straight beams but also of the lateral and torsional buckling and post-buckling behaviour of stiff-joined frames. Most of the former developments appear to be inadequate.  相似文献   

7.
In a companion paper the authors presented a convenient formulation for the stability analysis of structures using the finite element method. The main assumptions are linear elasticity, a linear fundamental path and the existence of distinct critical loads. The formulation developed is known as the W-formulation, where the energy is written in terms of a sliding set of incremental coordinates measured with respect to the fundamental path. In the present paper a number of applications of finite elements for post-buckling analysis on composite plate assemblies are presented. Thin-walled composite plates, I-beams, angle sections, and a specially designed box-beam with flanges (unicolumn) are studied in post-buckling when axially loaded. The results are in good agreement with previous studies. Moreover, a parametric study involving critical buckling load and geometry is presented for the case of the unicolumn.  相似文献   

8.
In this paper, we explore the capabilities of some nonlinear strategies based on domain decomposition for nonlinear analyses, and more particularly for post-buckling analyses of large slender structures. After having recalled the classical Newton-Krylov-Schur methods, chosen here to serve as a reference, we propose two versions specifically developed to treat nonlinear phenomena at the most relevant scale through nonlinear localizations per substructure. All these different strategies lead to solving similar condensed problems on which we apply classical Domain Decomposition Methods. Performances are discussed and comparative results in terms of convergence are presented in the case of beam frames with large rotations and local buckling.  相似文献   

9.
Thermal post-buckling behaviour of tapered columns is investigated through a finite element analysis. Columns of rectangular cross sections with breadth taper (depth being constant), depth taper (breadth being constant) and columns of circular cross sections with diameter taper are considered under simply—supported and clamped boundary conditions. Results for various cases are presented in the form of linear thermal buckling load and empirical formulae for the ratios of nonlinear thermal load to linear thermal buckling load.  相似文献   

10.
A reduced basis technique and a problem-adaptive computational algorithm are presented for the bifurcation and post-buckling analysis of laminated anisotropic plates. The computational algorithm can be conveniently divided into three distinct stages. The first stage is that of determining the bifurcation point. The plate is discretized by using displacement finite element (or finite difference) models. The special symmetries exhibited by the response of the anisotropic plate are used to reduce the size of the analysis region. The vector of unknown nodal parameters is expressed as a linear combination of a small number of basis vectors, and a Rayleigh-Ritz technique is used to approximate the finite element equations by a small system of algebraic equations. The reduced equations are used to determine the bifurcation point and the associated eigen mode of the panel.In the second stage of the bifurcation buckling mode is used to obtain a nonlinear solution in the vicinity of the bifurcation point and new (updated) sets of basis vectors and reduced equations are generated. In the third stage the reduced equations are used to trace the post-buckling paths.The effectiveness of the proposed technique for predicting the bifurcation and post-buckling behavior of plates is demonstrated by means of numerical examples for plates loaded by means of prescribed edge displacements.  相似文献   

11.
This paper presents a geometrically non-linear formulation using total lagrangian approach for the solid-shell transition finite elements. Such transition finite elements are necessary in geometrically non-linear analysis of structures modelled with three dimensional solid elements and the curved shell elements. These elements are an essential connecting link between the solid elements and the shell elements. The element formulation presented here is derived using the properties of the three dimensional solid elements and the curved shell elements. No restrictions are imposed on the magnitude of the nodal rotations. Thus the element formulation is capable of handling large rotations between two successive load increments. The element properties are derived and presented in detail. Numerical examples are also presented to demonstrate their behavior, accuracy and applications in three dimensional stress analysis.

It is shown that the selection of different stress and strain components at the integration points do not effect the overall linear response of the element. However, in geometrically non-linear applications it may be necessary to select appropriate stress and the strain components at the integration points for stable and converging element behavior. Numerical examples illustrate various characteristics of the element.  相似文献   


12.
A finite element formulation including the effects of shear deformation and cylindrically orthotropic material properties is described for studying the post-buckling behaviour of annular plates. Numerical results for the buckling load parameter and ratios of nonlinear load parameter to buckling load parameter for various values of orthotropic properties, thicknesses and radii ratios of the plates are presented.  相似文献   

13.
A direct iterative numerical method is presented for predicting the post-local-buckling response of thin-walled continuous structures. Nonlinearities due to local buckling and non-linear material properties are accounted for by the nonlinear moment-curvature relations of the section derived with the aid of effective width concept. Since the effective width of the compression element decreases as the stress borne by the element edge increases, the effective flexural rigidity of the cross-section varies along the member length depending upon the magnitude of the moment at the section. In the post-buckling range, the member is treated as a nonprismatic section. For continuous thin-walled structures, it is further complicated by the fact that the bending moment distribution throughout the structure and the member stiffnesses are interdependent. The proposed direct iterative solution scheme includes a stiffness matrix method of analysis in conjunction with a numerical integration procedure for evaluating the member stiffnesses. The method is employed to analyze continuous beams in the post-buckling range. Using the moment distribution of an elastic prismatic continuous beam based on the nonbuckling analysis as a first approximation, it has been found that the iterative solution scheme converges rapidly.An excellent agreement has been obtained between the results based on the method presented and from an earlier study for continuous beams. The stiffness formulation is direct and is well suited for the analysis of continuous thin-walled structures.  相似文献   

14.
The paper introduces a discrete model to describe the buckling of a stiffened panel beam under a complex loading environment. The study begins by examining the existing load interaction equation for a continuous panel. Experimental and finite element investigations establish the validity of considering the critical panel of a more complex structure in isolation. The paper then devises a discrete model for this critical panel, which was validated for a range of boundary conditions using anti-optimisation. The numerical results show that the discrete model exhibits the buckling behaviour of a continuous panel under combined loading. Recent studies established that the truss-lattice configuration has stable post-buckling behaviour and derived fast analysis technique for such a structure. It is therefore concluded that the truss-lattice model introduced in the present paper can offer a fast analysis formulation for buckling (and potentially post-buckling) of multiple-panel beams suitable for optimisation. Presented at the 7th World Congress on Computational Mechanics, LA, USA, July 2006.  相似文献   

15.
On the automatic solution of nonlinear finite element equations   总被引:9,自引:0,他引:9  
An algorithm for the automatic incremental solution of nonlinear finite element equations in static analysis is presented. The procedure is designed to calculate the pre- and post-buckling/collapse response of general structures. Also, eigensolutions for calculating the linearized buckling response are discussed. The algorithms have been implemented and various experiences with the techniques are given.  相似文献   

16.
This paper focuses on criterion functions for gradient based optimization of the buckling load of laminated composite structures considering different types of buckling behaviour. A local criterion is developed, and is, together with a range of local and global criterion functions from literature, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization.  相似文献   

17.
The post-buckling behaviour of cylindrically orthotropic circular plates is investigated through a finite element formulation, with the plates resting on an elastic foundation and their edges are elastically restrained against rotation. Results are presented in the form of linear buckling load parameters and empirical formulae for radial load ratios for various values of spring stiffness, foundation stiffness and orthotropy parameter.  相似文献   

18.
《Computers & Structures》1987,26(4):693-701
A very simple and effective formulation and numerical procedure to remove the restriction of small rotations between two successive increments for the geometrically nonlinear finite element analysis of in-plane frames is presented. A co-rotational formulation combined with small deflection beam theory with the inclusion of the effect of axial force is adopted. A body attached coordinate is used to distinguish between rigid body and deformational rotations. The deformational nodal rotational angles are assumed to be small, and the membrane strain along the deformed beam axis obtained from the elongation of the arc length of the deformed beam element is assumed to be constant. The element internal nodal forces are calculated using the total deformational nodal rotations in the body attached coordinate. The element stiffness matrix is obtained by superimposing the bending and the geometric stiffness matrices of the elementary beam element and the stiffness matrix of the linear bar element. An incremental iterative method based on the Newton-Raphson method combined with a constant arc length control method is employed for the solution of the nonlinear equilibrium equations. In order to improve convergence properties of the equilibrium iteration, a two-cycle iteration scheme is introduced. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method.  相似文献   

19.
The present study concentrates on the optimization of geometrically nonlinear shell structures using the multipoint approximation approach. The latter is an iterative technique, which uses a succession of approximations for the implicit objective and constraint functions. These approximations are formulated by means of multiple regression analysis. In each iteration the technique enables the use of results gained at several previous design points. The approximate functions obtained are considered to be valid within a current subregion of the space of design variables defined by move limits. A geometrically nonlinear curved triangular thin shell element with the corner node displacements and the mid-side rotations as degrees of freedom is used for the FE analysis. The influence of initial shape imperfections on the optimum designs is investigated. Imperfections are considered as a shape distortion proportional to the lowest buckling modes of the perfect structure. Displacement, stress, and stability constraints are taken into account. To prevent finite element solutions from becoming unstable during the optimization process, a simple strategy for avoiding passage of stability points is applied. Some numerical examples are solved to show the practical use and efficiency of the technique presented.  相似文献   

20.
The paper presents a nonlinear finite element analysis of elastic structures subject to nonconservative forces. Attention is focused on the stability behaviour of such systems. This leads mathematically to non-self-adjoint boundary-value problems which are of great theoretical and practical interest, in particular in connection with alternative modes of instability like divergence of flutter. Only quasistatic effects are however considered in the present part.The methodology of our theory is general, but the specific thrust of the present research is directed towards the analysis of structures acted upon by displacement-dependent nonconservative (follower) forces. In a finite element formulation the analysis of geometrically nonlinear elastic systems subject to such forces gives, in general, rise to a contributory nonsymmetric stiffness matrix known as the load correction matrix. As a result, the total tangent stiffness matrix becomes unsymmetric - an indication of the non-self-adjoint character of the problem. Our theory is based on the natural mode technique [1, 2, 3]and permits i.a. a simple but elegant derivation of the load correction matrix. The application of the general theory as evolved in this paper is demonstrated on the beam element in space. A number of numerical examples are considered including divergence and flutter types of instability, for which exact analytic solutions are known. The problems demonstrate the efficiency of the present finite element formulation.The paper furnishes also a novel and concise formulation of finite rotations in space which may be considered as a conceptual generalization of the theory presented in [2, 3].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号