首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-protein-coupled receptors (GPCRs) transduce the signals for a wide range of hormonal and sensory stimuli by activating a heterotrimeric guanine nucleotide-binding protein (G protein). The analysis of loss-of-function and constitutively active receptor mutants has helped to reveal the functional properties of GPCRs and their role in human diseases. Here we describe the identification of a new class of mutants, dominant-negative mutants, for the yeast G-protein-coupled alpha-factor receptor (Ste2p). Sixteen dominant-negative receptor mutants were isolated based on their ability to inhibit the response to mating pheromone in cells that also express wild-type receptors. Detailed analysis of two of the strongest mutant receptors showed that, unlike other GPCR interfering mutants, they were properly localized at the plasma membrane and did not alter the stability or localization of wild-type receptors. Furthermore, their dominant-negative effect was inversely proportional to the relative amount of wild-type receptors and was reversed by overexpressing the G-protein subunits, suggesting that these mutants compete with the wild-type receptors for the G protein. Interestingly, the dominant-negative mutations are all located at the extracellular ends of the transmembrane segments, defining a novel region of the receptor that is important for receptor signaling. Altogether, our results identify residues of the alpha-factor receptor specifically involved in ligand binding and receptor activation and define a new mechanism by which GPCRs can be inactivated that has important implications for the evaluation of receptor mutations in other G-protein-coupled receptors.  相似文献   

2.
The alpha-factor pheromone receptor (Ste2p) of the yeast Saccharomyces cerevisiae belongs to the family of G protein-coupled receptors that contain seven transmembrane domains (TMDs). Because polar residues can influence receptor structure by forming intramolecular contacts between TMDs, we tested the role of the five polar amino acids in TMD6 of the alpha-factor receptor by mutating these residues to nonpolar leucine. Interestingly, a subset of these mutants showed increased affinity for ligand and constitutive receptor activity. The mutation of the most polar residue, Q253L, resulted in 25-fold increased affinity and a 5-fold-higher basal level of signaling that was equal to about 19% of the alpha-factor induced maximum signal. Mutation of the adjacent residue, S254L, caused weaker constitutive activity and a 5-fold increase in affinity. Comparison of nine different mutations affecting Ser254 showed that an S254F mutation caused higher constitutive activity, suggesting that a large hydrophobic amino acid residue at position 254 alters transmembrane helix packing. Thus, these studies indicate that Gln253 and Ser254 are likely to be involved in intramolecular interactions with other TMDs. Furthermore, Gln253 and Ser254 fall on one side of the transmembrane helix that is on the opposite side from residues that do not cause constitutive activity when mutated. These results suggest that Gln253 and Ser254 face inward toward the other TMDs and thus provide the first experimental evidence to suggest the orientation of a TMD in this receptor. Consistent with this, we identified two residues in TMD7 (Ser288 and Ser292) that are potential contact residues for Gln253 because mutations affecting these residues also cause constitutive activity. Altogether, these results identify a new domain of the alpha-factor receptor that regulates its ability to enter the activated conformation.  相似文献   

3.
This report compares trafficking routes of a plasma membrane protein that was misfolded either during its synthesis or after it had reached the cell surface. A temperature-sensitive mutant form of the yeast alpha-factor pheromone receptor (ste2-3) was found to provide a model substrate for quality control of plasma membrane proteins. We show for the first time that a misfolded membrane protein is recognized at the cell surface and rapidly removed. When the ste2-3 mutant cells were cultured continuously at 34 degrees C, the mutant receptor protein (Ste2-3p) failed to accumulate at the plasma membrane and was degraded with a half-life of 4 min, compared with a half-life of 33 min for wild-type receptor protein (Ste2p). Degradation of both Ste2-3p and Ste2p required the vacuolar proteolytic activities controlled by the PEP4 gene. At 34 degrees C, Ste2-3p comigrated with glycosylated Ste2p on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that Ste2-3p enters the secretory pathway. Degradation of Ste2-3p did not require delivery to the plasma membrane as the sec1 mutation failed to block rapid turnover. Truncation of the C-terminal cytoplasmic domain of the mutant receptors did not permit accumulation at the plasma membrane; thus, the endocytic signals contained in this domain are unnecessary for intracellular retention. In the pep4 mutant, Ste2-3p accumulated as series of high-molecular-weight species, suggesting a potential role for ubiquitin in the elimination process. When ste2-3 mutant cells were cultured continuously at 22 degrees C, Ste2-3p accumulated in the plasma membrane. When the 22 degrees C culture was shifted to 34 degrees C, Ste2-3p was removed from the plasma membrane and degraded by a PEP4-dependent mechanism with a 24-min half-life; the wild-type Ste2p displayed a 72-min half-life. Thus, structural defects in Ste2-3p synthesized at 34 degrees C are recognized in transit to the plasma membrane, leading to rapid degradation, and Ste2-3p that is preassembled at the plasma membrane is also removed and degraded following a shift to 34 degrees C.  相似文献   

4.
The alpha-factor pheromone receptor activates a G protein signaling pathway that induces the conjugation of the yeast Saccharomyces cerevisiae. Our previous studies identified AFR1 as a gene that regulates this signaling pathway because overexpression of AFR1 promoted resistance to alpha-factor. AFR1 also showed an interesting genetic relationship with the alpha-factor receptor gene, STE2, suggesting that the receptor is regulated by Afr1p. To investigate the mechanism of this regulation, we tested AFR1 for a role in the two processes that are known to regulate receptor signaling: phosphorylation and down-regulation of ligand-bound receptors by endocytosis. AFR1 overexpression diminished signaling in a strain that lacks the C-terminal phosphorylation sites of the receptor, indicating that AFR1 acts independently of phosphorylation. The effects of AFR1 overexpression were weaker in strains that were defective in receptor endocytosis. However, AFR1 overexpression did not detectably influence receptor endocytosis or the stability of the receptor protein. Instead, gene dosage studies showed that the effects of AFR1 overexpression on signaling were inversely proportional to the number of receptors. These results indicate that AFR1 acts independently of endocytosis, and that the weaker effects of AFR1 in strains that are defective in receptor endocytosis were probably an indirect consequence of their increased receptor number caused by the failure of receptors to undergo ligand-stimulated endocytosis. Analysis of the ligand binding properties of the receptor showed that AFR1 overexpression did not alter the number of cell-surface receptors or the affinity for alpha-factor. Thus, Afr1p prevents alpha-factor receptors from activating G protein signaling by a mechanism that is distinct from other known pathways.  相似文献   

5.
We have used a combination of sequence comparisons, computer-based modeling and site-directed mutagenesis to investigate the molecular interactions involved in ligand binding and signal transduction of the human 5-HT1B receptor. Two amino acid residues, S212 in transmembrane region (TM) V and F331 in TM VI, were replaced by alanines. These amino acids are conserved in many G protein-coupled receptors and therefore likely to be important for receptor function. The mutant receptors were expressed in Chinese hamster ovary cells. The 5-HT-like agonist 5-carboxamido-tryptamine (5-CT) bound with 15-fold lower affinity to the S212A mutant as compared to wild-type receptor and the antagonist methiothepin bound with 17-fold lower affinity to the F331A mutant. No reduction in the affinity of 5-HT was seen for the S212A mutant, although an equivalent mutation in the 5-HT1A receptor resulted in a 100-fold reduction of 5-HT binding. The inhibition of forskolin-stimulated cyclic AMP production by 5-HT was significantly reduced in cells expressing the F331A mutant, even though the endogenous ligand 5-HT bound with somewhat increased affinity. Methiothepin acted as an inverse agonist and increased the forskolin-stimulated cyclic AMP production at both the wild-type receptor and the mutants, and the effect was stronger on the F331A mutant. These results suggest that F331 is involved in the conformational changes necessary for signal transduction.  相似文献   

6.
alpha-Factor, a 13-amino-acid pheromone secreted by haploid alpha cells of Saccharomyces cerevisiae, binds to Ste2p, a seven-transmembrane, G-protein-coupled receptor present on haploid alpha cells, to activate a signal transduction pathway required for conjugation and mating. To determine the structural requirements for alpha-factor activity, we developed a genetic screen to identify from random and semirandom libraries novel peptides that function as agonists or antagonists of Ste2p. The selection scheme was based on autocrine strains constructed to secrete random peptides and respond by growth to those that were either agonists or antagonists of Ste2p. Analysis of a number of peptides obtained by this selection procedure indicates that Trp1, Trp3, Pro8, and Gly9 are important for agonist activity specifically. His2, Leu4, Leu6, Pro10, a hydrophobic residue 12, and an aromatic residue 13 are important for both agonist and antagonist activity. Our results also show that activation of Ste2p can be achieved with novel, unanticipated combinations of amino acids. Finally, the results suggest the utility of this selection scheme for identifying novel ligands for mammalian G-protein-coupled receptors heterologously expressed in S. cerevisiae.  相似文献   

7.
A human tumor necrosis factor-alpha (TNF-alpha) mutant (M3S) with low systemic toxicity in vivo was designed, and its structures in two different crystal packings were determined crystallographically at 1.8 and 2.15-A resolution, respectively, to explain altered biological activities of the mutant. M3S contains four changes: a hydrophilic substitution of L29S, two hydrophobic substitutions of S52I and Y56F, and a deletion of the N-terminal seven amino acids that is disordered in the structure of wild-type TNF-alpha. Compared with wild-type TNF-alpha, it exhibits 11- and 71-fold lower binding affinities for the human TNF-R55 and TNF-R75 receptors, respectively, and in vitro cytotoxic effect and in vivo systemic toxicity of M3S are 20 and 10 times lower, respectively. However, in a transplanted solid tumor mouse model, M3S suppresses tumor growth more efficiently than wild-type TNF-alpha. M3S is highly resistant to proteolysis by trypsin, and it exhibits increased thermal stability and a prolonged half-life in vivo. The L29S mutation causes substantial restructuring of the loop containing residues 29-36 into a rigid segment as a consequence of induced formation of intra- and intersubunit interactions, explaining the altered receptor binding affinity and thermal stability. A mass spectrometric analysis identified major proteolytic cleavage sites located on this loop, and thus the increased resistance of M3S to the proteolysis is consistent with the increased rigidity of the loop. The S52I and Y56F mutations do not induce a noticeable conformational change. The side chain of Phe56 projects into a hydrophobic cavity, while Ile52 is exposed to the bulk solvent. Ile52 should be involved in hydrophobic interactions with the receptors, since a mutant containing the same mutations as in M3S except for the L29S mutation exhibits an increased receptor binding affinity. The low systemic toxicity of M3S appears to be the effect of the reduced and selective binding affinities for the TNF receptors, and the superior tumor-suppression of M3S appears to be the effect of its weak but longer antitumoral activity in vivo compared with wild-type TNF-alpha. It is also expected that the 1.8-A resolution structure will serve as an accurate model for explaining the structure-function relationship of wild-type TNF-alpha and many TNF-alpha mutants reported previously and for the design of new TNF-alpha mutants.  相似文献   

8.
Genetic evidence suggests that the yeast STE4 and STE18 genes encode G beta and G gamma subunits, respectively, that the G betagamma complex plays a positive role in the pheromone response pathway, and that its activity is subject to negative regulation by the G alpha subunit (product of the GPA1 gene) and to positive regulation by cell-surface pheromone receptors. However, as yet there is no direct biochemical evidence for a G betagamma protein complex associated with the plasma membrane. We found that the products of the STE4 and STE18 genes are stably associated with plasma membrane as well as with internal membranes and that 30% of the protein pool is not tightly associated with either membrane fraction. A slower-migrating, presumably phosphorylated, form of Ste4p is enriched in the non-membrane fraction. The Ste4p and Ste18p proteins that had been extracted from plasma membranes with detergent were found to co-sediment as an 8 S particle under low salt conditions and as a 6 S particle in the presence of 0.25 M NaCl; the Ste18p in these fractions was precipitated with anti-Ste4p antiserum. Under the conditions of our assay, Gpa1p was not associated with either particle. The levels of Ste4p and Ste18p accumulation in mutant cells provided additional evidence for a G betagamma complex. Ste18p failed to accumulate in ste4 mutant cells, and Ste4p showed reduced levels of accumulation and an increased rate of turnover in ste18 mutant cells. The gpa1 mutant blocked stable association of Ste4p with the plasma membrane, and the ste18 mutant blocked stable association of Ste4p with both plasma membranes and internal membranes. The membrane distribution of Ste4p was unaffected by the ste2 mutation or by down-regulation of the cell-surface receptors. These results indicate that at least 40% of Ste4p and Ste18p are part of a G betagamma complex at the plasma membrane and that stable association of this complex with the plasma membrane requires the presence of G alpha.  相似文献   

9.
10.
Although the beta-adrenergic receptor antagonist (-)-propranolol binds with relatively low affinity at human 5-hydroxytryptamine1D beta receptors (Ki = 10,200 nM), it displays significantly higher affinity (Ki = 17 nM) at its species homolog, 5-HT1B receptors, and at a mutant 5-HT1D beta receptor (Ki = 16 nM), where the threonine residue at position 355 (T355) is replaced with an asparagine residue (i.e., a T355N mutant). Propranolol contains two oxygen atoms, an ether oxygen atom and a hydroxyl oxygen atom, and it has been speculated that the enhanced affinity of propranolol for the T355N mutant receptor is related to the ability of the asparagine residue to hydrogen bond with the ether oxygen atom. However, the specific involvement of the propranolol oxygen atoms in binding to the wild-type and T355N mutant 5-HT1D beta receptors has never been addressed experimentally. A modification of a previously described 5-HT1D beta receptor graphic model was mutated by replacement of T355 with asparagine. Propranolol was docked with the wild-type and T355N mutant 5-HT1D beta receptor models in an attempt to understand the difference in affinity of the ligand for the receptors. The binding models suggest that the asparagine residue of the mutant receptor can form hydrogen bonds with both oxygen atoms of propranolol, whereas the threonine moiety of the wild-type receptor can hydrogen-bond only to one oxygen atom. To test this hypothesis, we prepared and examined several analogues of propranolol that lacked either one or both oxygen atoms. The results of radioligand binding experiments are consistent with the hypothesis that both oxygen atoms of propranolol could participate in binding to the mutant receptor, whereas only the ether oxygen atom participates in binding to the wild-type receptor. As such, this is the first investigation of serotonin receptors that combines the use of molecular modeling, mutant receptors generated by site-directed mutagenesis, and synthesis to investigate structure/affinity relationships.  相似文献   

11.
The pheromone-responsive Gbeta subunit of Saccharomyces cerevisiae (encoded by STE4) is rapidly phosphorylated at multiple sites when yeast cells are exposed to mating pheromone. It has been shown that a mutant form of Ste4 lacking residues 310-346, ste4delta310-346, cannot be phosphorylated, and that its expression leads to defects in recovery from pheromone stimulation. Based on these observations, it was proposed that phosphorylation of Ste4 is associated with an adaptive response to mating pheromone. In this study we used site-directed mutagenesis to create two phosphorylation null (Pho-) alleles of STE4: ste4-T320A/S335A and ste4-T322A/S335A. When expressed in yeast, these mutant forms of Ste4 remained unphosphorylated upon pheromone stimulation. The elimination of Ste4 phosphorylation has no discernible effect on either signaling or adaptation. In addition, disruption of the FUS3 gene, which encodes a pheromone-specific MAP kinase, leads to partial loss of pheromone-induced Ste4 phosphorylation. Two-hybrid analysis suggests that the ste4delta310-346 deletion mutant is impaired in its interaction with Gpa1, the pheromone-responsive Galpha of yeast, whereas the Ste4-T320A/S335A mutant has normal affinity for Gpa1. Taken together, these results indicate that pheromone-induced phosphorylation of Ste4 is not an adaptive mechanism, and that the adaptive defect exhibited by the 310-346 deletion mutant is likely to be due to disruption of the interaction between Ste4 and Gpa1.  相似文献   

12.
Ste5 is a scaffold for the mitogen-activated protein kinase (MAPK) cascade components in a yeast pheromone response pathway. Ste5 also associates with Ste4, the beta subunit of a heterotrimeric guanine nucleotide-binding protein, potentially linking receptor activation to stimulation of the MAPK cascade. A RING-H2 motif at the Ste5 amino terminus is apparently essential for function because Ste5(C177S) and Ste5(C177A C180A) mutants did not rescue the mating defect of a ste5Delta cell. In vitro Ste5(C177A C180A) bound each component of the MAPK cascade, but not Ste4. Unlike wild-type Ste5, the mutant did not appear to oligomerize; however, when fused to a heterologous dimerization domain (glutathione S-transferase), the chimeric protein restored mating in an ste5Delta cell and an ste4Delta ste5Delta double mutant. Thus, the RING-H2 domain mediates Ste4-Ste5 interaction, which is a prerequisite for Ste5-Ste5 self-association and signaling.  相似文献   

13.
A superfamily of growth factor and cytokine receptors has recently been identified, which is characterized by four spatially conserved cysteine residues, a tryptophan-serine motif (WSXWS) in the extracellular domain, and a proline-rich cytoplasmic domain. The high affinity human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (hGM-CSFR) consists of two subunits, alpha (hGM-CSFR alpha) and beta (hGM-CSFR beta), both of which are members of the receptor superfamily. In this study, we prepared mutations in conserved amino acids of the receptor subunit necessary for GM-CSF binding (hGM-CSFR alpha) and analyzed mutant receptors for low affinity binding, internalization, and high affinity binding when complexed with the beta subunit. Mutations in the cytoplasmic domain did not affect GM-CSF binding or receptor internalization. Mutation of a single conserved serine residue within the WSXWS motif diminishes cell surface receptor expression but not ligand binding. Mutation of either the second or third conserved cysteine residue of hGM-CSFR alpha resulted in complete loss of low affinity binding; however, co-expression of the cysteine 2 mutant with hGM-CSFR beta yielded a high affinity receptor complex. Since neither the cysteine 2 mutant nor the beta subunit can bind ligand alone, this result suggests that hGM-CSFR alpha and hGM-CSFR beta exist in a preformed heterodimeric protein complex on the plasma membrane.  相似文献   

14.
We have studied the pharmacological properties of genetically engineered human NK1 tachykinin receptors in which residues at the extracellular surface of the fourth transmembranal domain were substituted with the corresponding amino acids from the NK2 receptor. We show that substitution of G166C:Y167F in the human NK1 receptor induces high affinity binding of a group of tachykinin ligands, known as 'septides' (i.e. neurokinin A, neurokinin B, [pGlu6,Pro9]-substance P6-11 and substance P-methylester). In contrast, binding of substance P and non-peptide antagonists is unaffected by these mutations. This effect parallels that found on the rat receptor and is therefore species specific. Second, we demonstrate that mutation of Gly166 to Cys alone is both necessary and sufficient to create this pan-reactive tachykinin receptor, whereas replacement of Tyr167 by Phe has no detectable effect on the pharmacological properties of the receptor. Furthermore, analysis of the effect of N-ethylmaleimide and dithiothreitol on binding of radiolabelled substance P documents differences in the mode in which this ligand interacts with wild-type and mutant receptors and supports the existence of a mutational induced change in the conformational status of the NK1 receptor.  相似文献   

15.
Based on single residue substitutions, previous studies suggested that Gln165, His197, and His265 of the neurokinin-1 receptor interact directly with many nonpeptide antagonists, including CP-96,345. To further test this model, all three residues have been substituted simultaneously with alanine. The Q165A-H197A-H265A triple mutant bound CP-96,345 and eight analogs with similar affinity (2-20 microM), even though the same series of compounds bound to the wild-type receptor with affinities over a range of 1000-fold. These observations correspond exactly to the prediction of the binding site model. The micromolar binding affinity of all tested CP-96,345 analogs for the triple mutant seems to reflect solely van der Waals interactions, which suggests a significant contribution of conformational compatibility (or shape complementarity) to binding affinity. The primary role of conformational compatibility in ligand binding was consistent with the observation that simply transferring the residues involved in polar interactions with beta2-agonists into the neurokinin-1 receptor did not lead to increased binding affinity for the beta2-agonists. Taken together, these results support a general principle of ligand-receptor binding in which specific polar interactions can take place only if the overall ligand conformation is compatible with the stereochemistry of the binding pocket. In addition, double-residue and triple-residue substitutions, in combination with single-residue substitutions, can provide an alternative route to reveal multiple interactions that may not be detectable by single-residue substitutions and represent a novel approach to examine ligand-receptor interactions in the absence of high-resolution structural data.  相似文献   

16.
A thromboxane A2 receptor cDNA was isolated from a human placenta library by polymerase chain reaction (PCR) and was expressed in insect (Sf21) cells using baculovirus system. The recombinant receptor exhibited [3H]-SQ29548 and [125I]-BOP binding activities with Kd values of 1.01 +/- 0.09 nM and 1.63 +/- 0.23 nM, respectively. The receptor binding activity was inhibited by dithiothreitol in a time- and concentration-dependent manner, indicating the involvement of disulfide linkage in ligand binding. The role of the four conserved cysteinyl residues in ligand binding was further examined by site-directed mutagenesis. Each of the four cysteinyl residues was respectively mutated to a serine residue. C102S, C105S, and C183S mutants exhibited no ligand binding activity although successful expression was achieved as revealed by immunoblot analysis, whereas C257S mutant retained most of the binding activity. Homology analysis of all prostanoid receptors indicates that Cys-105 (first extracellular loop) and Cys-183 (second extracellular loop) are conserved and are presumed to form a disulfide bond for receptor stability as suggested by the inhibition of ligand binding by dithiothreitol reduction. Loss of binding activity by C102S mutant revealed that the sulfhydryl group of Cys-102 must play an essential role in ligand binding. Molecular modeling proposed that the Ser-201 is involved in interacting with TXA2 by forming hydrogen bonding. Point mutations of both Ser-201 and a conserved Ser-255 did not affect the ligand binding specificity and affinity for [3H]-SQ29548, but have significantly altered Kd values for [125I]-BOP. These results indicate that various cysteinyl and serine residues of thromboxane A2 receptor may play different roles in ligand binding.  相似文献   

17.
The mating pathway of Saccharomyces cerevisiae is widely used as a model system for G protein-coupled receptor-mediated signal transduction. Following receptor activation by the binding of mating pheromones, G protein betagamma subunits transmit the signal to a MAP kinase cascade, which involves interaction of Gbeta (Ste4p) with the MAP kinase scaffold protein Ste5p. Here, we identify residues in Ste4p required for the interaction with Ste5p. These residues define a new signaling interface close to the Ste20p binding site within the Gbetagamma coiled-coil. Ste4p mutants defective in the Ste5p interaction interact efficiently with Gpa1p (Galpha) and Ste18p (Ggamma) but cannot function in signal transduction because cells expressing these mutants are sterile. Ste4 L65S is temperature-sensitive for its interaction with Ste5p, and also for signaling. We have identified a Ste5p mutant (L196A) that displays a synthetic interaction defect with Ste4 L65S, providing strong evidence that Ste4p and Ste5p interact directly in vivo through an interface that involves hydrophobic residues. The correlation between disruption of the Ste4p-Ste5p interaction and sterility confirms the importance of this interaction in signal transduction. Identification of the Gbetagamma coiled-coil in Ste5p binding may set a precedent for Gbetagamma-effector interactions in more complex organisms.  相似文献   

18.
Platelet-activating factor (PAF) is a potent phospholipid mediator that produces a wide range of biological responses. The PAF receptor is a member of the seven-transmembrane GTP-binding regulatory protein-coupled receptor superfamily. This receptor binds PAF with high affinity and couples to multiple signaling pathways, leading to physiological responses that can be inhibited by various structurally distinct PAF antagonists. We have used site-directed mutagenesis and functional expression studies to examine the role of the Phe97 and Phe98 residues located in the third transmembrane helix and Asn285 and Asp289 of the seventh transmembrane helix in ligand binding and activation of the human PAF receptor in transiently transfected COS-7 cells. The double mutant FFGG (Phe97 and Phe98 mutated into Gly residues) showed a 3-4-fold decrease in affinity for PAF, but not for the specific antagonist WEB2086, when compared with the wild-type (WT) receptor. The FFGG mutant receptor, however, displayed normal agonist activation, suggesting that these two adjacent Phe residues maintain the native PAF receptor conformation rather than interacting with the ligand. On the other hand, substitution of Ala for Asp289 increased the receptor affinity for PAF but abolished PAF-dependent inositol phosphate accumulation; it did not affect WEB2086 binding. Substitution of Asn for Asp289, however, resulted in a mutant receptor with normal binding and activation characteristics. When Asn285 was mutated to Ala, the resulting receptor was undistinguishable from the WT receptor. Surprisingly, substitution of Ile for Asn285 led to a loss of ligand binding despite normal cell surface expression levels of this mutant, as verified by flow cytometric analysis. Our data suggest that residues 285 and 289 are determinant in the structure and activation of the PAF receptor but not in direct ligand binding, as had been recently proposed in a PAF receptor molecular model.  相似文献   

19.
A mutant human m5 receptor containing the mutations of Ser465 to Tyr and Thr466 to Pro showed constitutive activity. By replacing the equivalent Ser388 with Tyr and Thr389 with Pro, we created a mutant human m1 (Hm1) receptor with comparable double mutations. The mutant receptor, Hm1(Ser388Tyr, Thr389Pro), was stably expressed in A9 L cells and displayed enhanced responses to classical muscarinic agonists with significantly increased potencies. Choline, a normal component of growth media, showed an efficacy comparable to acetylcholine and carbachol at Hm1(Ser388Tyr, Thr389Pro) receptors. Methylcarbachol, a selective nicotinic agonist, exhibited partial agonist activity at human m1 wild-type receptors and full agonist activity at Hm1(Ser388Tyr, Thr389Pro) receptors. l-Hyoscyamine inhibited the activities of choline and methylcarbachol. Muscarinic antagonists displayed small reductions in binding affinities, although muscarinic agonists showed greatly increased binding affinities for Hm1(Ser388Tyr, Thr389Pro) receptors. All agonists, including choline and methylcarbachol, showed multiple affinity states at Hm1(Ser388Tyr, Thr389Pro) receptors in the absence of GppNHp. The high affinity binding sites for acetylcholine, arecoline and choline were shifted in the presence of GppNHp. These results suggest that Hm1(Ser388Tyr, Thr389Pro) is conformationally favorable for agonist binding and receptor activation.  相似文献   

20.
G protein-coupled receptors that transduce signals for many hormones, neurotransmitters, and inflammatory mediators are internalized and subsequently recycled to the plasma membrane, or down-regulated by targeting to lysosomes for degradation. Here we have characterized yeast alpha-factor receptors tagged with green fluorescent protein (Ste2-GFP) and used them to obtain mutants defective in receptor down-regulation. In wild type cells, Ste2-GFP was functional and localized to the plasma membrane and endocytic compartments. Although GFP was fused to the cytoplasmic tail of the receptor, GFP also accumulated in the lumen of the vacuole, suggesting that the receptor's extracellular and cytoplasmic domains are degraded within the vacuole lumen. Transposon mutagenesis and a visual screen were used to identify mutants displaying aberrant localization of Ste2-GFP. Mutants that accumulated Ste2-GFP in numerous intracellular vesicles carried disruptions of the VAM3/PTH1 gene, which encodes a syntaxin homolog (t-SNARE) required for homotypic vacuole membrane fusion, autophagy and fusion of biosynthetic transport vesicles with the vacuole. We provide evidence that Vam3 is required for the delivery of alpha-factor receptor-ligand complexes to the vacuole. Vam3 homologs in mammalian cells may mediate late steps in the down-regulation and lysosomal degradation pathways of various G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号