首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
SH3 domains are protein modules that interact with proline-rich polypeptide fragments. Cbl is an adapter-like protein known to interact with several SH3 domains, including the PLCgamma1 SH3 domain and the Grb2 amino terminal SH3 domain. Here we explore whether sequences surrounding the PLCgamma1 SH3 domain core sequence (aa.796-851) can affect the binding to Cbl, a target used as a prototypical ligand. Consistent with previous reports, our results demonstrated a weak binding of Cbl to GST fusion proteins that strictly encompass the structural core of the PLCgamma1 SH3 domain but a high-avidity binding to the Grb2 amino-terminal SH3 domain. Inclusion of amino acids immediately flanking the PLCgamma1 SH3 core domain, however, substantially increased binding of Cbl to a level comparable to that of the Grb2 amino-terminal SH3 domain. The interaction of this extended PLCgamma1 SH3 domain fusion protein with Cbl was shown to depend entirely upon the interaction of the domain with a proline-rich motif in Cbl, ruling out the possibility that amino acids adjacent to the core SH3 domain of PLCgamma1 provide independent Cbl binding. These data suggest that sequences surrounding the SH3 domain of PLCgamma1 may contribute to or stabilize the association of the domain with the target protein, thus increasing its binding efficiency.  相似文献   

7.
8.
9.
10.
11.
Coxsackievirus B4 (CBV-4) capsid protein VP0 and non-structural 2C protein were expressed and purified using a glutathione-S-transferase (GST) fusion protein expression system. We used a full-size CBV-4 cDNA as a template to amplify the genes by polymerase chain reaction (PCR). The genes were cloned into expression vector pGEX-2T and expressed as a fusion protein with GST. The GST-fusion proteins (GST-2C and GST-VP0) were purified in denatured and native forms and used to generate antibodies in rabbits. The antisera raised against GST-VP0 fusion protein recognized the corresponding structural proteins (VP0, VP2 and VP4) from purified CBV-4 preparations and infected cell lysates. In addition, cross-reactivity with CAV-9 and CBV-5 capsid proteins was observed. Anti-GST-2C antisera precipitated viral 2C protein in CBV-4-infected GMK cells, showing that the antibodies recognize the corresponding natural antigen.  相似文献   

12.
13.
14.
15.
16.
The pesticin activity and immunity genes on plasmid pPCP1 of Yersinia pestis were sequenced. They encoded proteins of 40 kDa (pesticin) and 16 kDa (immunity protein); the latter was found in the periplasm. The location of the immunity protein suggests that imported pesticin is inactivated in the periplasm before it hydrolyzes murein. Pesticin contains a TonB box close to the N-terminal end that is identical to the TonB box of colicin B. The DNA sequences flanking the pesticin determinant were highly homologous to those flanking the colicin 10 determinant. It is proposed that through these highly homologous DNA sequences, genes encoding bacteriocins may be exchanged between plasmids by recombination. In the case of pesticin, recombination may have destroyed the lysis gene, of which only a rudimentary fragment exists on pPCP1.  相似文献   

17.
18.
19.
20.
The ordered copolymerization of viral proteins to form the herpes simplex virus (HSV) capsid occurs within the nucleus of the infected cell and is a complex process involving the products of at least six viral genes. In common with capsid assembly in double-stranded DNA bacteriophages, HSV capsid assembly proceeds via the assembly of an outer capsid shell around an interior scaffold. This capsid intermediate matures through loss of the scaffold and packaging of the viral genomic DNA. The interior of the HSV capsid intermediate contains the viral protease and assembly protein which compose the scaffold. Proteolytic processing of these proteins is essential for and accompanies capsid maturation. The assembly protein (ICP35) is the primary component of the scaffold, and previous studies have demonstrated it to be capable of intermolecular association with itself and with the major capsid protein, VP5. We have defined structural elements within ICP35 which are responsible for intermolecular self-association and for interaction with VP5. Yeast (Saccharomyces cerevisiae) two-hybrid assays and far-Western studies with purified recombinant ICP35 mapped a core self-association domain between Ser165 and His219. Site-directed mutations in this domain implicate a putative coiled coil in ICP35 self-association. This coiled-coil motif is highly conserved within the assembly proteins of other alpha herpesviruses. In the two-hybrid assay the core self-association domain was sufficient to mediate stable self-association only in the presence of additional structural elements in either N- or C-terminal flanking regions. These regions also contain conserved sequences which exhibit a high propensity for alpha helicity and may contribute to self-association by forming additional short coiled coils. Our data supports a model in which ICP35 molecules have an extended conformation and associate in parallel orientation through homomeric coiled-coil interactions. In additional two-hybrid experiments we evaluated ICP35 mutants for association with VP5. We discovered that in addition to the C-terminal 25 amino acids of ICP35, previously shown to be required for VP5 binding, an additional upstream region was required. This region is between Ser165 and His234 and contains the core self-association domain. Site-directed mutations and construction of chimeric molecules in which the self-association domain of ICP35 was replaced by the GCN4 leucine zipper indicated that this region contributes to VP5 binding through mediating self-association of ICP35 and not through direct binding interactions. Our results suggest that self-association of ICP35 strongly promotes stable association with VP5 in vivo and are consistent with capsid formation proceeding via formation of stable subassemblies of ICP35 and VP5 which subsequently assemble into capsid intermediates in the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号