共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper demonstrates empirical research on using convolutional neural networks (CNN) of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction. Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge. In this study, CNN architectures such as VGG-16, VGG-19, RestNet50, RestNet18 are compared, and an optimized model for feature extraction in X-ray images from various domains involving several classes is proposed. An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for classifying COVID-19 (Negative or Positive). Then, 2,134 X-rays of normal patients and COVID-19 patients generated by an existing open-source online dataset were labeled to train the optimized models. Among those, the optimized model architecture classifier technique achieves higher accuracy (0.97) than four other models, specifically VGG-16, VGG-19, RestNet18, and RestNet50 (0.96, 0.72, 0.91, and 0.93, respectively). Therefore, this study will enable radiologists to more efficiently and effectively classify a patient’s coronavirus disease. 相似文献
2.
K. S. Bhuvaneshwari Ahmed Najat Ahmed Mehedi Masud Samah H. Alajmani Mohamed Abouhawwash 《计算机系统科学与工程》2023,46(3):2933-2945
The immediate and quick spread of the coronavirus has become a life-threatening disease around the globe. The widespread illness has dramatically changed almost all sectors, moving from offline to online, resulting in a new normal lifestyle for people. The impact of coronavirus is tremendous in the healthcare sector, which has experienced a decline in the first quarter of 2020. This pandemic has created an urge to use computer-aided diagnosis techniques for classifying the Covid-19 dataset to reduce the burden of clinical results. The current situation motivated me to choose correlation-based development called correlation-based grey wolf optimizer to perform accurate classification. A proposed multistage model helps to identify Covid from Computed Tomography (CT) scan image. The first process uses a convolutional neural network (CNN) for extracting the feature from the CT scans. The Pearson coefficient filter method is applied to remove redundant and irrelevant features. Finally, the Grey wolf optimizer is used to choose optimal features. Experimental analysis proves that this determines the optimal characteristics to detect the deadly disease. The proposed model’s accuracy is 14% higher than the krill herd and bacterial foraging optimization for severe accurate respiratory syndrome image (SARS-CoV-2 CT) dataset. The COVID CT image dataset is 22% higher than the existing krill herd and bacterial foraging optimization techniques. The proposed techniques help to increase the classification accuracy of the algorithm in most cases, which marks the stability of the stated result. Comparative analysis reveals that the proposed classification technique to predict COVID-19 with maximum accuracy of 98% outperforms other competitive approaches. 相似文献
3.
由于影像学技术在新型冠状病毒肺炎(COVID-19)的诊断和评估中发挥了重要作用,COVID-19相关数据集陆续被公布,但目前针对相关文献中数据集以及研究进展的整理相对较少。为此,通过COVID-19相关的期刊论文、报告和相关开源数据集网站,对涉及到的新冠肺炎数据集及深度学习模型进行整理和分析,包括计算机断层扫描(CT)图像数据集和X射线(CXR)图像数据集。对这些数据集呈现的医学影像的特征进行分析;重点论述开源数据集,以及在相关数据集上表现较好的分类和分割模型。最后讨论了肺部影像学技术未来的发展趋势。 相似文献
4.
5.
针对高光谱遥感影像的降维问题,提出一种高光谱影像地物分类方法:direct LDA子空间法。先采用直接线性判别分析(direct linear discriminant analysis, direct LDA)进行特征提取,然后在特征子空间中采用最短距离分类器进行地物分类。机载可见光/红外成像光谱仪(airborne visible/infrared imaging spectrometer,AVIRIS)的高光谱影像识别结果表明,该方法相比LDA子空间法和原空间法,可显著降低数据维数,提高识别率。 相似文献
6.
在多标记学习中,特征选择是解决多标记数据高维性的有效手段。每个标记对样本的可分性程度不同,这可能会为多标记学习提供一定的信息。基于这一假设,提出了一种基于标记权重的多标记特征选择算法。该算法首先利用样本在整个特征空间的分类间隔对标记进行加权,然后将特征在整个标记集合下对样本的可区分性作为特征权重,以此衡量特征对标记集合的重要性。最后,根据特征权重对特征进行降序排列,从而得到一组新的特征排序。在6个多标记数据集和4个评价指标上的实验结果表明,所提算法优于一些当前流行的多标记特征选择算法。 相似文献
7.
8.
一种基于贝叶斯和神经网络的医学图像组合分类方法 总被引:1,自引:0,他引:1
医学图像分类是当前医学图像自动诊断和模式识别领域的一个新的研究热点,其任务是从给定的医学图像训练样本中提取能反映图像内容的特征,并根据这些特征进行图像分类,实现医学图像中病变组织的自动识别,以保证临床医学诊断更客观、准确和科学.通过对医学图像分类中的一些关键问题分析和研究,提出一种基于贝叶斯和神经网络的医学图像组合分类方法,并据此构造出医学图像组合分类器.这种组合分类器能够充分发挥各个分类器的优点,获得较好的图像分类结果. 相似文献
9.
半结构化数据的模式抽取对于半结构化数据查询、优化及异构数据的集成具有重要的意义.结合标签路径及标签路径的目标集概念,提出了基于OEM(Object Exchange Model)模型的半结构化数据最小化模式抽取新方法,并给出了与标签路径目标集、支持度计算相关的两个定理.算法的基本思路:依据文中的两个定理,采用宽度优先自顶向下的遍历策略依次求出各标签路径的最后一个标签的目标集及支持度,标签支持度大的目标集优先映射为对应的模式节点.对同一半结构数据实例,算法抽取的模式与其他算法得到的模式相比规模小、算法执行时间短.算法适用于层次型及包含环路的OEM半结构化数据模式抽取. 相似文献
10.
人脸表情识别的研究进展 总被引:1,自引:0,他引:1
人脸表情识别是人机交互、机器学习、智能控制和图像处理等领域涉及的重要研究方向,目前已成为国内外研究的热点。从人脸表情识别的特征提取和特征分类两方面出发,总结了国内外近几年人脸表情识别的进展状况。在特征提取阶段,根据所处理的图像的属性,分别从静态图像和动态图像两个方面总结人脸表情的特征提取算法,前者包括整体法和局部法,后者分为模型法、光流法和几何法。在分类器的设计上,以贝叶斯网络和距离度量两条理论主线,贯穿主要的方法。最后结合国内外最新的研究成果和应用领域,展望了人脸表情识别的发展。 相似文献
11.
受医疗资源紧张和医疗水平较低等因素的影响,新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)尚未得到有效控制.利用深度学习方法在胸部X射线(chest X-ray,CXR)图像中检测感染者是一种安全有效的途径.针对上述问题,提出一种自动识别COVID-19的CXR图像的智能方法.根据CXR图像的特点,提出了对特征信息敏感的双路径多尺度特征融合(dual-path multi-scale fusion,DMFF)模块和密集空洞深度可分离卷积(dense dilated depthwise separable,D3S)模块,分别提取浅层特征与深层特征.在此基础上,设计了高效的轻量级卷积神经网络——DD-CovidNet.DMFF模块通过融合多尺度特征感知更丰富的浅层特征,D3S模块通过强化特征传递与增大感受野提取更有效的类别区分特征.在2个数据集上进行了实验验证,结果表明,DD-CovidNet模型对COVID-19识别的灵敏度为96.08%,精度与特异性均为100.00%,且具有较少的参数量与较快的分类速度.与其他模型相比,DD-CovidNet模型的检测速度更快,检测结果更准确. 相似文献
12.
13.
Mohamed Yacin Sikkandar K. Hemalatha M. Subashree S. Srinivasan Seifedine Kadry Jungeun Kim Keejun Han 《计算机系统科学与工程》2023,47(1):873-889
Recently, COVID-19 has posed a challenging threat to researchers, scientists, healthcare professionals, and administrations over the globe, from its diagnosis to its treatment. The researchers are making persistent efforts to derive probable solutions for managing the pandemic in their areas. One of the widespread and effective ways to detect COVID-19 is to utilize radiological images comprising X-rays and computed tomography (CT) scans. At the same time, the recent advances in machine learning (ML) and deep learning (DL) models show promising results in medical imaging. Particularly, the convolutional neural network (CNN) model can be applied to identifying abnormalities on chest radiographs. While the epidemic of COVID-19, much research is led on processing the data compared with DL techniques, particularly CNN. This study develops an improved fruit fly optimization with a deep learning-enabled fusion (IFFO-DLEF) model for COVID-19 detection and classification. The major intention of the IFFO-DLEF model is to investigate the presence or absence of COVID-19. To do so, the presented IFFO-DLEF model applies image pre-processing at the initial stage. In addition, the ensemble of three DL models such as DenseNet169, EfficientNet, and ResNet50, are used for feature extraction. Moreover, the IFFO algorithm with a multilayer perceptron (MLP) classification model is utilized to identify and classify COVID-19. The parameter optimization of the MLP approach utilizing the IFFO technique helps in accomplishing enhanced classification performance. The experimental result analysis of the IFFO-DLEF model carried out on the CXR image database portrayed the better performance of the presented IFFO-DLEF model over recent approaches. 相似文献
14.
指纹图象特征提取的新方法 总被引:1,自引:0,他引:1
指纹特征的提取在指纹自动识别系统中是一个必不可少的重要环节。指纹特征通常包括指纹奇异点和细节特征点。文章在给出了一种计算指纹方向图的新方法基础上提出了奇异点的提取新方法。实验表明该方法能够准确地提取出指纹的奇异点,并具有较强的抗干扰性。针对指纹图象质量较差时,存在大量的伪细节特征点,文章提出了一种新的细节特征点验证的方法,获得了良好实验结果。 相似文献
15.
分别介绍了颜色特征的描述方法和相似度匹配算法,并分析了基于颜色的图像检索的局限性,给出了相应的解决办法。 相似文献
16.
We address the problem of texture classification. Random walks are simulated for plane domains bounded by absorbing boundaries Γ, and the absorption distributions are estimated. Measurements derived from the above distributions are the features used for texture classification. Experiments using such a model have been performed and the results showed a rate of accuracy of 89.7% for a data set consisting of one hundred and twenty-eight textured images equally distributed among thirty-two classes of textures. 相似文献
17.
Bark子波变换的改进及其在水声目标分类中的应用 总被引:1,自引:0,他引:1
该文在Bark子波的构造的基础上,提出一种改进的子波变换。该子波变换在Bark子波变换的非线性映射中引入伸缩尺度参数,以及改变Bark子波母函数的相关参数,实现了更为灵活的频域划分。然后基于改进的子波变换进行水声目标特征提取,及分类实验。实验表明,改进的子波变换提取特征的可分性优于Bark子波变换。 相似文献
18.
鲍翠梅 《计算机应用与软件》2010,27(5):197-199
在文本自动分类中,针对如何进行文本特征的选择和提取这一关键和基础性工作,提出用支持向量度量词汇对分类的贡献,然后进行文本特征的提取。实验结果表明,该方法可以在确保分类信息不损失的前提下,降低向量空间的维数,提高分类器效率和分类准确率。 相似文献
19.
基于内容的图像检索技术研究 总被引:1,自引:0,他引:1
随着数字图像在多媒体领域的广泛应用,对基于内容的图像检索技术的需求也不断增加.基于内容的图像检索技术总体上可以分为两部分:图像特征提取、图像特征的索引与匹配.图像特征提取主要解决如何在数学上有效地描述一幅图像.文中分别介绍了颜色、形状和纹理特征提取算法近年来的研究成果.图像特征索引与匹配,主要解决如何根据特征描述判断图像间的相似程度,并准确、快速列出图像库中与检索图像相似的图像,分别介绍了相似度测量方法、聚类与分类技术、相关反馈技术三类技术的主要研究成果.最后对基于内容的图像检索技术的研究难点进行了讨论,对未来可能的研究方向进行了展望. 相似文献