首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the physical and mechanical behaviors of geopolymers prepared by using different amounts of silica fume and calcium hydroxide as binding materials, acidic pumice as fine aggregate and waste aluminium particles as air-entraining agent were investigated. Test results showed that binder types, amount of binders and alkali activator (sodium hydroxide) significantly affected the physical and mechanical behavior of geopolymer specimens. Bulk density, compressive and flexural strength decreased with the higher alkali activator content. Addition of waste aluminium particles led to decrease in bulk density and strength due to the some extent of entrained air. In the case of same alkali activator content, compressive and flexural strength increased with increase in silica fume and calcium hydroxide up to a certain level.  相似文献   

2.
Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.  相似文献   

3.
The primary concern for vegetable fibre reinforced mortar composites (VFRMC) is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength and toughness as a result of weakening of the fibres by a combination of alkali attack and mineralisation through the migration of hydration products to lumens and spaces. This paper presents several approaches used to improve the durability performance of VFRMCs incorporating sisal and coconut fibres. These include carbonation of the matrix in a CO2-rich environment; the immersion of fibres in slurried silica fume prior to incorporation in the ordinary Portland cement (OPC) matrix; partial replacement of OPC matrix by undensified silica fume or blast-furnace slag and a combination of fibre immersion in slurried silica fume and cement replacement. The durability of the modified VFRMC was studied by determining the effects of ageing in water, exposure to cycles of wetting and drying and open air weathering on the microstructures and flexural behaviour of the composites. Immersion of natural fibres in a silica fume slurry before their addition to cement-based composites was found to be an effective means of reducing embrittlement of the composite in the environments studied. Early cure of composites in a CO2-rich environment and the partial replacement of OPC by undensified silica fume were also efficient approaches in obtaining a composite of improved durability. The use of slag as a partial cement replacement had no effect on reducing the embrittlement of the composite.  相似文献   

4.
In this study, the effect of incorporation of silica fume in enhancing strength development rate and durability characteristics of binary concretes containing a low reactivity slag has been investigated. Binary concretes studied included mixes containing slag at cement replacement levels of 15%, 30% and 50% and mixes containing silica fume at cement replacement levels of 2.5%, 5%, 7.5% and 10%. Ternary concretes included combinations of silica fume and slag at various cement replacement levels. The w/b ratio and total cementitious materials content were kept constant for all mixes at 0.38 and 420 kg/m3 respectively. Concrete mixes were evaluated for compressive strength, electrical resistance, chloride permeability (ASTM C1202 RCPT test) and chloride migration (AASHTO TP64 RCMT test), at various ages up to 180 days.The results show that simultaneous use of silica fume has only a moderate effect in improving the slow rate of strength gain of binary mixes containing low reactivity slag. However it improves their durability considerably. Using appropriate combination of low reactivity slag and silica fume, it is possible to obtain ternary mixes with 28 day strength comparable to the control mix and improve durability particularly in the long term. Ternary mixes also have the added advantage of reduced water demand.  相似文献   

5.
In this study, we have proved that heavy metals in high porous and alkali baghouse ash could be fixed effectively by fume silica powder alone, or with the incorporation of colloidal aluminum oxide (CAO). The optimum amount is about 100g of fume silica per kilogram of baghouse ash. Results have indicated that fume silica has a better fixation efficiency of lead in high porous baghouse ash. In addition, the reaction mechanism of fume silica is also discussed.  相似文献   

6.
李志坤  彭家惠  杨再富 《材料导报》2017,31(12):115-120
高性能减水剂与水泥适应性差会导致混凝土流动性和坍落度损失过快,矿物掺合料将影响高性能减水剂与水泥的相容性。对比研究矿物掺合料种类和掺量对水泥净浆、砂浆和混凝土流动性的影响;采用TOC法测试了矿物掺合料对聚羧酸减水剂吸附量的影响;分析了矿物掺合料影响聚羧酸减水剂与水泥相容性的机理。结果表明,粉煤灰和矿渣对提高水泥净浆流动性具有一定的叠加效应,可用胶砂减水率的加权平均值进行量化;硅灰对水泥浆体流动性的不利影响远大于粉煤灰和矿渣的辅助减水分散作用,不利于改善聚羧酸减水剂与水泥的相容性;粉煤灰和矿渣增加聚羧酸减水剂在水泥体系中的吸附量;粉煤灰和矿渣对聚羧酸减水剂在混凝土中的减水分散效果有改善作用但不显著。  相似文献   

7.
Cementless slag ash concrete may be manufactured using high-calcium fly ash and silica fume as replacements for a binder and a microfiller, and incorporating slag sand from thermal power plants (TPP) as an aggregate. This concrete consists of waste products from TPP (fly ash and slag) and ferro-alloy plants (silica fume) and contains neither natural nor artificial aggregates for lightweight and heavy concretes. Silica fume (10–20% by weight of ash) and hot water together with subsequent heat treatment of concrete products or of castin situ structures binds the excess free calcium oxide present in the ash, and thus prevents deterioration of the concrete. The processes of concrete structure formation were investigated after 24 hours, 28 days, 3 and 6 months and the physico-mechanical, deformation and special properties (frost resistance, heat conductivity, protection of reinforcement from corrosion) were studied. This concrete conforms to the Russian Federation GOST requirement for use in single, two-storey buildings. The cost of the concrete is reduced by a factor of 3 compared with that of ordinary concrete.  相似文献   

8.
This work aims to reveal the effects of silica fume on properties of fly ash based geopolymer under thermal cycles. Geopolymer specimens were prepared by alkali activation of fly ash, which was partially replaced by silica fume at levels ranging from 0% to 30% with an interval of 10%, by mass. Microstructure, residual strength and mass loss of fly ash based geopolymer blended with silica fume before and after exposed to 7, 28 and 56 heat-cooling thermal cycles at different target temperatures of 200 °C, 400 °C and 800 °C were assessed and compared. The experimental results reveal that silica fume addition enhances strength development in geopolymer. Under thermal cycles, the compressive strength of geopolymer decreases, and the compressive strength loss, as well as the mass loss, increases with increasing target temperature. The strength loss is the same regardless of silica fume content after thermal cycles. Microstructure analysis uncovers that pore structure of geopolymer degrades after thermal cycles. The pores of geopolymer are refined by the addition of silica fume. The incorporation of silica fume optimizes the microstructure and improves the thermal resistance of geopolymer. Silica fume increases the strength of the geopolymer and even though the strength loss is the same, the strength after heat cycle exposure is still good.  相似文献   

9.
A long-term corrosion study was conducted to determine the effectiveness of calcium nitrite, silica fume, fly ash, ground granulated blast furnace slag, and DSS in reducing corrosion of reinforcing steel in concrete. Mixture proportions included single, double, and triple combinations of these admixtures. Non-cracked and pre-cracked slab specimens were evaluated by visual inspections, macrocell readings, half-cell potentials, and autopsies. Triple combinations of calcium nitrite, silica fume, and either fly ash or ground granulated blast furnace slag, as well as a double combination of calcium nitrite and ground granulated blast furnace slag, performed very well and are recommended in concrete mixtures exposed to severe corrosive environments. DSS outperformed the other admixtures for corrosion prevention in this study; however, it resulted in somewhat lower compressive strengths and had not been fully tested for effects on other concrete properties.  相似文献   

10.
This study investigated the flowability, compressive strength, heat of hydration, porosity and calcium hydroxide content of ultra-high-strength concrete (UHSC) with cement–silica fume–slag binder at 20 °C. The composition of the binder was designed using seven-batch factorial design method. The relationships between the binder composition and the properties were expressed in contours. Results showed that proper silica fume content could improve the flowability and compressive strength of UHSC, reduce the porosity and calcium hydroxide content of UHSC. Slag reduced the flowability, compressive strength, porosity, and calcium hydroxide content of UHSC to certain extent. The silica fume and slag demonstrated positive synergistic effects on the flowability and 3 d compressive strength, but have negative synergistic effects on the total heat of hydration, hydration heat when the time is infinitely long(P0), 56 d compressive strength, porosity and calcium hydroxide content of UHSC.  相似文献   

11.
This article concerns marginal variations in the functional properties of very-high-strength mortars and concretes resulting from the type of silica fume used. Twenty silica fumes were tested, in the presence of two cement-superplasticizer pairs. All of the results are analysed into main components and regressions. The action of carbon on the workability of the mixtures has been verified. Finally, within the limits of the scattering of the results, it has been possible to establish an empirical law, fitted to previous results, showing the influence of the alkali content of the silica fume on its pozzolanic activity.  相似文献   

12.
An understanding of the performance of portland cement-based materials requires knowledge at the microstructural level. Developments in the instrumentation of several techniques have led to improved understanding of the composition, morphology, and spatial distribution of the various products of cement hydration. In particular, our understanding of the nature of the nearly amorphous calcium silicate hydrate (C–S–H) phases – which are the principal binding phases in all portland cement-based systems – has been advanced by developments in solid-state NMR spectroscopy and analytical TEM. This paper presents an overview of the nature of the hydration products formed in hardened portland cement-based systems. It starts with the most straightforward cementitious calcium silicate systems, C3S and β-C2S, and then considers ordinary portland cement and blends of portland cement with silica fume, ground granulated iron blast-furnace slag, and finally alkali hydroxide-activated slag cements.  相似文献   

13.
Recently, it has been said that deterioration of concrete structures occurs due to migration of ions, such as Cl or Na+, through concrete. In addition, some electrochemical methods which control migration properties through concrete, like desalination or re-alkalization, are becoming more important. However, the mechanisms of ion migration, in electric fields, through concrete are not well understood. Moreover, the effects of mineral admixtures, such as fly ash, silica fume and ground-granulated blast furnace slag on ion migration through concrete have not been closely investigated. From this viewpoint, for the evaluation of mineral admixtures, the properties of chloride ion migration through mortar containing fly ash, silica fume and ground-granulated blast furnace slag have been investigated.  相似文献   

14.
High performance concrete—An overview   总被引:6,自引:0,他引:6  
It is suggested that high performance concrete is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blastfurnace slag and silica fume, as well as superplasticizer. The cost aspects of the use of silica fume are considered. The content of cementitious material is high and the water/cement ratio is low; the maximum size of aggregate is small. Although ordinary Portland cement is used, it must be compatible with a given superplasticizer; the causes of incompatibility are discussed. The distinct shrinkage behaviour of high performance concrete is considered and the reasons for an absolute necessity of wet curing are given. Some uses of high performance concrete are mentioned. A ‘prediction’ of the future of high performance concrete and of concrete in general is offered.  相似文献   

15.
Pore structure is an essential factor that influences the mechanical behavior and durability of cement-based porous materials with or without added binders. An empirical model for water vapor sorption isotherms was employed to evaluate the pore structure of hardened cement pastes incorporating granulated blast furnace slag and silica fume. The model is an extension of the Brunauer–Emmett–Teller multilayer adsorption theory. Assuming cylindrical-shaped pores and an adsorbed liquid-like layer between the pore surface and gas phase, pore size distributions of the blended cement pastes were estimated. Calculated pore size distribution curves were compared with those measured by mercury intrusion porosimetry. Added granulated blast furnace slag and silica fume had minor effects on the monolayer adsorption capacity, but reduced the energy of the first and subsequent adsorption layers. The adsorbed liquid-like layer generated sharper pore size distribution peaks that were shifted to the mesoporous region. The pore size distributions were comparable with those determined by the mercury extrusion branch, but differed from those obtained by the mercury intrusion branch. Hysteresis of the water vapor adsorption–desorption isotherms and mercury intrusion–extrusion curves was due to the entrapment of a non-wetting phase in the porous system, further promoted by residual mercury in the pores following mercury extrusion.  相似文献   

16.
通过对粉煤灰、硅灰、矿渣、膨胀剂、引气减水剂(Air-Entrained Water Reduce Agent,AEWRA)和水泥基自愈合防水材料(Cementitious Capillary Crystalline Waterproofing Material,CCCWM)等多元外掺剂进行组合搭配掺入混凝土中,设计了5组混凝土配比。分析了复合盐(氯盐、硫酸盐和碳酸盐)浸-干湿-冻融循环等多种因素共同作用下多元外掺剂-混凝土的腐蚀破坏现象、质量损失率、相对动弹性模量衰减规律和抗侵蚀系数变化规律。采用SEM、EDS和XRD,研究了多元外掺剂-混凝土腐蚀的微观结构变化规律。研究结果表明,双掺粉煤灰和硅灰混凝土提高混凝土的抗侵蚀性能作用有限;在双掺粉煤灰和硅灰基础上加入适量的膨胀剂能够较大幅度提高混凝土的抗侵蚀性能,经11次复合盐浸-干湿-冻融循环后,其相对动弹性模量仍然在80%以上,抗侵蚀系数在0.9以上;CCCWM作为一种外掺剂加入混凝土会降低混凝土的耐侵蚀性,经4次复合盐浸-干湿-冻融循环后,相对动弹性模量就降到了60%以下,抗侵蚀系数从1.0降到了0.3。微观机制研究也表明,在复合盐浸-干湿-冻融循环作用下,腐蚀产物钙矾石和方解石共同作用会加速混凝土的腐蚀破坏。  相似文献   

17.
Electrochemical and corrosion behaviour of reinforced steel embedded in cement pastes incorporating different amounts of silica fume as a partial replacement of cement has been studied in chloride and sulphate solutions by using different electrochemical techniques. The results indicate that, while steel passivity degree is low in the control samples' upon soaking in the corrosive media, it has been high in samples incorporating silica fume and increased with increasing silica fume content. The improvement effect of silica fume may be attributed to the pore solution structure of the cement paste, which limits the mobility of aggressive ions near the surface of the steel. The mechanism of steel corrosion due to chloride and sulphate attack and passivation effect of silica fume are discussed.  相似文献   

18.
Electrochemical and corrosion behaviour of reinforced steel embedded in cement pastes incorporating different amounts of silica fume as a partial replacement of cement has been studied in chloride and sulphate solutions by using different electrochemical techniques.The results indicate that ,while steel passivity degree is low in the control samples‘upon soaking in the corrosive media,it has been high ih samples incorporating silica fume and increased with increasing silica fume content.The improvement effect of silica fume may be attributed to the pore solution structure of the cement paste,which limits the mobility of aggressive ions near the surface of the steel.The mechanism of steel corrosion due to chloride and sulphate attack and passivation effect of silica fume are discussed.  相似文献   

19.
研究了硅灰替代量(质量分数)为0%、5%、10%的复合硅酸盐胶凝体系浸泡在弱碱环境下,10%(质量分数)Na_2SO_4溶液中侵蚀210d时的侵蚀产物和含量。利用XRD、SEM、EDS对侵蚀产物进行了表征,通过K值法定量计算了硅灰复合硅酸盐胶凝体系中石膏的含量,通过分光光度法对硅灰复合硅酸盐胶凝体系中自由硫酸根离子以及总硫酸根离子含量进行了测定。结果表明,在弱碱环境下,10%Na_2SO_4溶液中硅灰复合硅酸盐胶凝体系的主要侵蚀产物是石膏和钙矾石,侵蚀产物的形成引起膨胀开裂,且随硅灰掺量的增加,硅灰复合硅酸盐胶凝体系中的自由硫酸根离子及总硫酸根离子含量和侵蚀产物明显减少,膨胀率也随硅灰掺量的增加而减小,硅灰对复合硅酸盐胶凝体系的膨胀有一定的改善作用。  相似文献   

20.
Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in cement matrix. Test results show that even alkali resistant fibres treated with zirconium oxide present the same degradation phenomenon. They also show that the nature of the cement has a large influence on the protection of the fibres: the Portland CEM II is less damaging than the CEM I. The substitutions of a part of cement by silica fume gave no substantial improvements to the mechanical strength of the glass fibre reinforced cement (GFRC). However, the observed microstructures in the samples show that the degradation is weakened with the addition of silica fumes. The analytical techniques used in this study are scanning electron microscope (SEM) and X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号