首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cheddar cheeses were produced with starter lactococci and Bifidobacterium longum 1941, B. lactis LAFTI® B94, Lactobacillus casei 279, Lb. paracasei LAFTI® L26, Lb. acidophilus 4962 or Lb. acidophilus LAFTI® L10 to study the survival of the probiotic bacteria and the influence of these organisms on proteolytic patterns and production of organic acid during ripening period of 6 months at 4 °C. All probiotic adjuncts survived the manufacturing process of Cheddar cheese at high levels without alteration to the cheese-making process. After 6 months of ripening, cheeses maintained the level of probiotic organisms at >8.0 log10 cfu g−1 with minimal effect on moisture, fat, protein and salt content. Acetic acid concentration was higher in cheeses with B. longum 1941, B. lactis LAFTI® B94, Lb. casei 279 and Lb. paracasei LAFTI® L26. Each probiotic organism influenced the proteolytic pattern of Cheddar cheese in different ways. Lb. casei 279 and Lb. paracasei LAFTI® L26 showed higher hydrolysis of casein. Higher concentrations of free amino acids (FAAs) were found in all probiotic cheeses. Although Bifidobacterium sp. was found to be weakly proteolytic, cheeses with the addition of those strains had highest concentration of FAAs. These data thus suggested that Lb. acidophilus 4962, Lb. casei 279, B. longum 1941, Lb. acidophilus LAFTI® L10, Lb. paracasei LAFTI® L26 and B. lactis LAFTI® B94 can be applied successfully in Cheddar cheese.  相似文献   

2.
The influence of three probiotic strains (Lactobacillus acidophilus, Lactobacillus paracasei and Bifidobacterium lactis) in semi-hard cheese proteolysis patterns was assessed. Probiotics were inoculated both as single cultures and as a three-strain mix, and added to milk either after a pre-incubation step or directly to the vat. B. lactis did not show any effect on proteolysis of cheeses, while L. paracasei showed limited impact at the end of the ripening. In contrast, L. acidophilus significantly influenced secondary proteolysis from the beginning of ripening, causing an increase in the levels of small nitrogen-containing compounds and free amino acids and changes in the peptide profiles. The effect of Lactobacillus acidophilus on peptidolysis was more noticeable when it was added to cheese–milk after pre-incubation in an enriched milk fat substrate. Similar results obtained with the three-strain mixed culture, suggesting that L. acidophilus played a major role in secondary proteolysis of probiotic cheeses in this trial.  相似文献   

3.
The individual contribution of 6 strains of probiotic bacteria (3 of Lactobacillus acidophilus and 3 of the Lactobacillus casei group) to proteolysis patterns in a semi-hard cheese was assessed. Control cheeses (without probiotics) and 2 types of experimental cheeses (with the addition of probiotics either directly to milk or by a 2-step fermentation method) were manufactured. Cheeses containing Lb. acidophilus showed the most extensive peptidolysis, which was evidenced by changes in the peptide profiles and a noticeable increase of free amino acids compared with control cheeses. The strains of the Lb. casei group showed a lower contribution to cheese peptidolysis, which consisted mainly of free amino acid increase. Two-step fermentation improved peptidolytic activity for only one of the cultures of Lb. acidophilus tested. The addition of Lb. acidophilus strains into cheese may be suitable not only for their beneficial health effect but also for their influence on secondary proteolysis, consistent with acceleration of ripening and improved flavor formation.  相似文献   

4.
《International Dairy Journal》2006,16(10):1181-1189
The viability of Lactobacillus acidophilus LAFTI® L10, Bifidobacterium lactis LAFTI® B94, and L. paracasei LAFTI® L26 and their proteolytic activities were assessed in yoghurt at different termination pH of 4.45, 4.50, 4.55, and 4.60 in the presence of L. delbrueckii ssp. bulgaricus Lb1466 and Streptococcus thermophilus St1342 during 28 days of storage at 4 °C. All strains achieved the recommended level of 6.00 log cfu g−1 of the product with L. acidophilus LAFTI® L10 and L. paracasei LAFTI® L26 exceeding the number to 8.00 and 7.00 log cfu g−1, respectively. Lactobacilli strains showed a good cellular stability maintaining constant concentration throughout storage period regardless of termination pH. On the other hand, the cell counts of B. lactis LAFTI® B94 decreased by one log cycle at the end of storage. The presence of probiotic organisms enhanced proteolysis significantly in comparison with the control batch containing L. delbrueckii ssp. bulgaricus Lb1466 and S. thermophilus St1342 only. The proteolytic activity varied due to termination pH, but also appeared to be strain related. The increased proteolysis improved survival of L. delbrueckii ssp. bulgaricus Lb1466 during storage resulting in lowering of pH and production of higher levels of organic acids, which might have caused the low cell counts for B. lactis LAFTI® B94.  相似文献   

5.
The sensory properties of probiotic Cheddar cheeses made using Lactobacillus acidophilus 4962, Lb. casei 279, Bifidobacterium longum 1941, Lb. acidophilus LAFTI® L10, Lb. paracasei LAFTI® L26 or B. lactis LAFTI® B94 were assessed after ripening for 9 months at 4 °C. Probiotic cheeses except those with Lb. acidophilus 4962 were significantly different (P<0.05) from the control without any probiotic organism. Acceptability of probiotic cheese with Lb. casei 279 was significantly lower (P<0.05) than that of the control cheese with bitterness and sour-acid taste as the major defects. Concentration of acetic acid in probiotic cheeses was higher (P<0.05) than the control cheese. Vinegary scores did not influence the acceptability of the cheeses (P>0.05). Increased proteolysis in probiotic cheeses did not influence the Cheddary attribute scores (P>0.05). There were positive correlations (P<0.05) between the scores of bitterness and the level of water-soluble nitrogen.  相似文献   

6.
In this study, the survival of the probiotics Lactobacillus acidophilus (LA-5), Lactobacillus casei subsp. paracasei (L. casei 01) and Bifidobacterium lactis (BB12) incorporated in a Brazilian semi-hard goat cheese (coalho) when exposed to in vitro simulated conditions of digestion was assessed. The inhibitory effects of these probiotic bacteria were also evaluated against Listeria monocytogenes and Staphylococcus aureus in the goat coalho cheese during refrigerated storage. At the end of the in vitro digestion, all of the probiotic tested strains presented decreased (p < 0.05) viable cell counts (5.5–6.0 log cfu/g) with respect to those determined before exposure to the mouth conditions (7–8 log cfu/g). L. casei subsp. paracasei presented inhibition rate of 7.87% and 23.63% against S. aureus on the 14th and 21st day of storage at 10 °C, respectively; against L. monocytogenes these values were 12.96 and 32.99%. Positive inhibition rates of B. lactis toward S. aureus were found on the 1st, 14th and 21st days of storage (16.32%, 10.12% and 3.67%, respectively); and against L. monocytogenes only on the 1st day of storage (3.28%). From these results, goat coalho cheese could be an interesting carrier of probiotic strains of L. acidophilus, L. casei subsp. paracasei and B. lactis. Moreover, L. casei subsp. paracasei, could be used as protective culture for delaying the growth of S. aureus and L. monocytogenes in goat coalho cheese.  相似文献   

7.
The growth and metabolism of six probiotic strains with documented health effects were studied in ultra-high temperature (UHT) treated milk supplemented with 0.5% (w/v) tryptone or 0.75% (w/v) fructose at different temperatures. The probiotic strains were Lactobacillus acidophilus La5, Lb. acidophilus 1748, Lb. johnsonii LA1, Lb. rhamnosus GG, Lb. reuteri SD 2112 and Bifidobacterium animalis BB12. Fermentation was followed for 48 h at 20, 30, 37 and 45 °C and the samples were analysed for pH, log cfu mL−1, volatile compounds, organic acids and carbon dioxide. All six probiotic strains showed very different profiles of metabolites during fermentation, however, the two Lb. acidophilus strains were the most alike. All strains, except Lb. reuteri SD 2112, showed viable cell numbers above 6.5 log cfu mL−1 after 48 h fermentation at 30, 37 and 45 °C. The probiotic strains produced different amounts of metabolic products according to temperature and fermentation time illustrating the importance of controlling these parameters.  相似文献   

8.
《International Dairy Journal》2005,15(6-9):921-927
Various foods may be used to deliver probiotic bacteria into the gastrointestinal tract; one such example is Requeijão, a Portuguese whey cheese. Survival and stability of Bifidobacterium animalis strains BLC-1, Bb-12, and Bo, Lactobacillus acidophilus strains LAC-1 and Ki, L. paracasei ssp. paracasei strain LCS-1 and L. brevis strain LMG 6906 inoculated into Requeijão, when exposed to simulated gastrointestinal tract conditions, were assessed. Homogenates of inoculated whey cheese in 0.85% (w/v) sterile saline water were exposed to a solution of hydrochloric acid (pH 2.5–3.0) and pepsin (1000 units mL–1) at 37 °C, and then to 0.3% (w/v) bile salts after 60 or 120 min of acid exposure. All bacterial strains retained their initial viable cell numbers. Bifidobacterium animalis strains Bb-12 and Bo, and L. brevis strain LMG 6906 exhibited the highest viable cell numbers when exposed to bile salts, whereas the other strains had variable death rates.  相似文献   

9.
10.
The viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 microencapsulated by either an extrusion or an emulsion technique and used in white-brined cheese was monitored. Both microencapsulation techniques were effective in keeping the numbers of probiotic bacteria higher than the level of the therapeutic minimum (>107 cfu g?1). While the counts of probiotic bacteria decreased approximately 3 log in the control cheese in which probiotics were used as free cells, the decrease was more limited in the cheeses containing microencapsulated cells (approximately 1 log). Medium- and long-chain free fatty acid contents of the cheeses with immobilized probiotics were much higher than in the control cheese. Similarly, cheeses made with immobilized probiotics contained higher acetaldehyde and diacetyl levels than the control. Experimental cheeses containing microencapsulated probiotics were not different from the control cheese in terms of sensory properties.  相似文献   

11.
Rennet pastes produced by lambs subjected to three different feeding systems (mother suckling [MS], artificial rearing [AR], and artificial rearing with Lactobacillus acidophilus supplementation [ARLB]) and slaughtered at two different ages (20 and 40 d) were used for the manufacture of Pecorino foggiano cheese. Composition and proteolysis during ripening of Pecorino foggiano cheese (four replicates batches) were analyzed. Proteolysis was greater in cheeses made with rennet pastes from lambs slaughtered at 20 d, as shown by analysis of nitrogen fractions (water-soluble N and proteose peptones). Supplementation of milk substitute with L. acidophilus may have influenced the growth dynamics of lactic acid bacteria in the rennet pastes, with positive effects on levels of lactobacilli in cheese at the beginning of the ripening time. Lower pH values in ARLB cheese during ripening, together with higher cell loads, suggest that supplementation of milk replacer with L. acidophilus resulted in higher proteolytic activity, as also confirmed by the composition of the pH 4.6—insoluble nitrogen fraction. No differences were found in total concentration of free amino acids among the experimental cheeses; phenylalanine, isoleucine, leucine, lysine were found at the highest levels. The addition of probiotic bacteria to milk substitute in lamb rearing appears to give good-quality lamb rennet paste.  相似文献   

12.
Lactobacillus plantarum ACA-DC 146 and L. paracasei subsp. tolerans ACA-DC 4037 were examined for their potential application as adjuncts in the production of traditional Greek set-type yoghurt. Both strains displayed low milk acidification activity, while no inhibition was observed towards or from the yoghurt starters used. Yoghurt produced with L. paracasei subsp. tolerans ACA-DC 4037 exhibited the best sensory properties, with a rich traditional smooth taste, and the strain was selected for further trials. Yoghurt produced with this strain as an adjunct had good physicochemical properties. After 2 weeks of refrigerated storage, microbial loads (>7.0 log cfu g−1) were in accordance with international recommendations and guidelines for probiotic and starter cultures in milk products. Increasing the microbial load further, using concentrated and encapsulated inocula (10–11 log cfu g−1), gave yoghurt with long fermentation times and poor organoleptic properties.  相似文献   

13.
The suitability of probiotic cultures as fruit juice supplements was examined by assessing their acid tolerance and technological robustness. Survival of Lactobacillus and Bifidobacterium strains in orange juice (OJ), pineapple juice (PJ) and cranberry juice (CJ) was monitored. Results revealed that extensive differences exist among probiotic strains regarding their acid resistance. All of the strains screened survived for longer in OJ and PJ compared to CJ. L. casei DN-114 001, L. rhamnosus GG and L. paracasei NFBC43338 displayed the greatest robustness surviving at levels above 107 cfu ml 1 in OJ and above 106 cfu ml 1 in PJ for at least 12 weeks. Probiotic tolerance to thermal and non-thermal processing was studied to determine the feasibility of their addition to OJ prior to pasteurisation. OJ fortified with probiotic cultures was subjected thermal pasteurisation at 76 °C for 30 s and 90 °C for 1 min in addition to a high pressure treatment of 400 MPa for 5 min. Results indicated no strain was capable of withstanding treatments necessary to achieve a stable juice at levels > 106 cfu ml 1. The outcome of the overall study points to L. rhamnosus GG, L. casei DN-114 001 and L. paracasei NFBC43338 as having promising potential for exploitation as functional supplements in fruit juices due to their impressive tolerance in acidic environments; however, fortification post processing is recommended.Industrial relevanceThe ability of health-promoting cultures to survive for at least 12 weeks in orange juice and pineapple juice at commercially critical levels renders them suitable strains for exploitation. Their inclusion may enhance the market potential of these already successful beverages.  相似文献   

14.
The growth and metabolism of two probiotic organisms (L. acidophilus LAFTI® L10 and Lactobacillus casei LAFTI® L26) and a regular yoghurt culture (L. delbrueckii ssp. bulgaricus Lb1466 and Streptococcus thermophilus St1342) were studied in yoghurt containing 0.5%, 1.0%, and 1.5% (w/v) of high amylose corn starch powder (Hi-maize®) or inulin. Viable cell counts of probiotic organisms, their metabolites and proteolytic activities, and viscosity of the yoghurts were determined during refrigerated storage for 28 d at 4 oC. In the presence of inulin, cultures showed better retention of viability (8.0 log cfu g−1) in comparison with that of Hi-maize, which had a reduction by one log cycle. Lower concentrations of 0.5–1.0% Hi-maize improved (P<0.05) the production of propionic acid and also increased proteolytic activity of probiotic organisms substantially. A greater release of free amino acids may have sustained better growth of the organisms in yoghurts. Supplementation with either Hi-maize or inulin increased the viscosity of probiotic yoghurts significantly (P<0.05).  相似文献   

15.
This study investigated pure Lactobacillus paracasei H9 tolerance to simulated gastrointestinal juices and adhesion to intestinal mucosa cells without yeasts, with viable yeasts (VY) and with different pretreated yeasts. Three models including gastric secretion tolerance (GST), intestinal juice tolerance (IJT) and sequential gastrointestinal tolerance (SGT) were respectively employed to assay the tolerance of L. paracasei H9, whilst Caco-2 cell line was used to investigate the bacterial adhesion. Particularly, the co-aggregation ability of the two strains at pH values of 2.0, 8.0 and 7.2 was originally carried out to study relations to the bacterial probiotic potentials. Results showed that yeast counts in the range from 3.0 to 5.0 log CFU mL? 1 could gradually increase the viability of L. paracasei H9 in SGT. The bacterial viability in the three tolerance models and the adherent number to Caco-2 cells were significantly improved with addition of VY (P < 0.05). The L. paracasei H9 with VY in gastric juice at pH 2.0 and intestinal juice at pH 8.0, respectively, exhibited higher aggregation percentage compared with that of single L. paracasei H9 at 37 °C (P < 0.05). The aggregation ability of L. paracasei H9 with VY at pH 7.2, which might contribute to increase the adhesion of the bacteria, also excelled that of L. paracasei H9 (P < 0.05). It is deduced that proteins of the bacterial cell surface and polysaccharides in yeast cell walls play important roles in co-aggregation of the two strains and the microbial adhesion specificity to Caco-2 cells. The co-aggregation of the two strains also contributes to enhancing probiotic potentials of L. paracasei H9.  相似文献   

16.
Two strains of probiotic bacteria, one of Lactobacillus acidophilus and the other of Lactobacillus paracasei subsp. paracasei, were tested as adjunct cultures in cheese-making experiments, in order to assess their viability during cheese-making and ripening. The adjunct culture was added to cheese-making milk following two different methodologies: as a lyophilized powder dispersed in milk, or within a substrate composed of milk and milk fat. In all cheeses, probiotic bacteria increased a log cycle during cheese-making, and remained almost constant during ripening (60 days), always in higher number than required to meet probiotic standards. Gross composition of the cheeses was not affected by the addition of probiotic bacteria, except for pH value: cheeses with L. acidophilus added within the pre-incubated substrate, had lower pH values and were over acidified and crumbly. Direct addition of the probiotic culture was the methodology with the best performance; however the pre-incubation presented some advantages such as an increased population of lactobacilli in the initial inoculum.  相似文献   

17.
A novel method for the encapsulation of probiotic cells in foodgrade casein microcapsules was developed. The process is based on a transglutaminase-catalysed gelation of casein suspensions containing probiotic cells. Water insoluble, spherical capsules with a volume-based median diameter of 165 ± 23 μm resulted from the process. Encapsulation yields of 70 ± 15% and 93 ± 22% were achieved for Lactobacillus paracasei ssp. paracasei F19 and Bifidobacterium lactis Bb12, respectively. Analysis of living cell numbers after incubation of free and encapsulated probiotics in simulated gastric juice without pepsin at pH 2.5 and pH 3.6 (37 °C, 90 min) showed a protective effect due to microencapsulation under all conditions tested. The study indicates that transglutaminase-induced caseinate gelation can be applied to the microencapsulation of probiotics. Furthermore, it could be shown that an entrapment in a dense casein matrix can protect these microorganisms from damage due to pH-levels similar to those in the human stomach.  相似文献   

18.
This study was undertaken to evaluate the effect of lamb rennet paste containing probiotic strains on proteolysis, lipolysis, and glycolysis of ovine cheese manufactured with starter cultures. Cheeses included control cheese made with rennet paste, cheese made with rennet paste containing Lactobacillus acidophilus culture (LA-5), and cheese made with rennet paste containing a mix of Bifidobacterium lactis (BB-12) and Bifidobacterium longum (BB-46). Cheeses were sampled at 1, 7, 15, and 30 d of ripening. Starter cultures coupled with probiotics strains contained in rennet paste affected the acidification and coagulation phases leading to the lowest pH in curd and cheese containing probiotics during ripening. As consequence, maturing cheese profiles were different among cheese treatments. Cheeses produced using rennet paste containing probiotics displayed higher percentages of αS1-I-casein fraction than traditional cheese up to 15 d of ripening. This result could be an outcome of the greater hydrolysis of α-casein fraction, attributed to higher activity of the residual chymosin. Further evidence for this trend is available in chromatograms of water-soluble nitrogen fractions, which indicated a more complex profile in cheeses made using lamb paste containing probiotics versus traditional cheese. Differences can be observed for the peaks eluted in the highly hydrophobic zone being higher in cheeses containing probiotics. The proteolytic activity of probiotic bacteria led to increased accumulation of free amino acids. Their concentrations in cheese made with rennet paste containing Lb. acidophilus culture and cheese made with rennet paste containing a mix of B. lactis and B. longum were approximately 2.5 and 3.0 times higher, respectively, than in traditional cheese. Principal component analysis showed a more intense lipolysis in terms of both free fatty acids and conjugated linoleic acid content in probiotic cheeses; in particular, the lipolytic pattern of cheeses containing Lb. acidophilus is distinguished from the other cheeses on the basis of highest content of health-promoting molecules. The metabolic activity of the cheese microflora was also monitored by measuring acetic, lactic, and citric acids during cheese ripening. Cheese acceptability was expressed for color, smell, taste, and texture perceived during cheese consumption. Use of probiotics in trial cheeses did not adversely affect preference or acceptability; in fact, panelists scored probiotic cheeses higher in preference over traditional cheese, albeit not significantly.  相似文献   

19.
《International Dairy Journal》2000,10(5-6):383-389
The mesophilic lactobacilli colonizing Fiore Sardo ewe's milk cheese were characterized. They seemed to be the dominant non-starter lactic acid bacteria composing its natural microflora, with a viable cell number varying from 105 CFU g−1 (1-day-old cheese) to 108 CFU g−1 (30-day-old cheese) and then slowly decreasing up to 104 CFU g−1 after 7 months’ ripening. Considering the relevance of mesophilic lactobacilli in affecting the cheese ripening, a PCR-based taxonomic identification of the Lactobacillus species isolated was performed. Cheese samples were collected from 3 farms and 457 isolates from cheeses at different ripening times were analysed with species-specific primers for L. plantarum, L. casei group, L. paracasei, L. casei, L. rhamnosus, L. pentosus, L. paraplantarum, L. curvatus, L. graminis and L. sake. L. plantarum and L. paracasei were the most frequently detected species. Moreover, the development and the evolution during ripening of the facultatively heterofermentative Lactobacillus species (FHL) were different in the three batches of cheese.  相似文献   

20.
Seventeen strains of mesophilic lactic acid bacteria, isolated from cheese (non-starter lactic acid bacteria, NSLAB) or sourdough, were used individually as adjunct cultures in a Caciotta cheese model system. Adjunct cultures were monitored by randomly amplified polymorphic DNA analysis and their cell counts mainly varied from ca. 9.0 to 8.0 log cfu g−1 throughout 36 days of ripening. Adjunct cultures influenced differently cheese proteolysis. Both NSLAB and sourdough strains caused an extensive secondary proteolysis; however, some NSLAB strains produced the highest concentration of free amino acids. Principal component analysis (PCA) differentiated cheeses manufactured with NSLAB strains Lactobacillus parabuckneri B9FST, Lb. paracasei B61F5, Lb. curvatus 2768 and Lb. rhamnosus ATCC 7469 based on the accumulation of Lys, Glu, Phe, Hist, Asp and Met. Assessment of cheese lipolysis showed that: (i) highest concentrations of free fatty acids (FFA) were found with NSLAB strains Lb. rhamnosus ATCC 7469 and Lb. casei subsp. pseudoplantarum 2742 (ca. 10 500 mg kg−1); (ii) PCA differentiated cheeses manufactured with NSLAB strains Lb. rhamnosus ATCC 7469 and Lb. casei subsp. pseudoplantarum 2742 based on the accumulation of palmitic (C16:0) and linoleic (C18:2) acids, and those with Lb. curvatus 2768 and Lb. parabuckneri B9FST based on the high concentration of short chain FFA; (iii) the cheese made with sourdough strain Lb. sanfranciscensis CB1 had the highest levels of unsaturated FFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号