首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effects of processing parameters, including the applied amount of microbial transglutaminase (MTGase), the pH of film-forming solution, air-drying temperature, as well as the additional pre-incubation, on the properties of MTGase-treated soy protein isolate (SPI) films were investigated. The treatment with low concentration of MTGase (4–10 units per gram of SPI, U g 1) significantly increased the tensile strength (TS) values of SPI films, while high concentration of MTGase (over 20 U g 1) resulted in significant decrease in the TS values (P  0.05). The elongation at break (EB) values of corresponding films gradually decreased, and the contact angle values persistently increased with the enzyme concentration. At alkaline pH range, the TS and EB values of MTGase-treated SPI films were significantly higher than that at pH 7.0 (P  0.05). Meanwhile, the contact angle values significantly decreased with increasing pH from 7.0 to 10.0 (P  0.05). The TS, EB and contact angle values of MTGase-treated films gradually but insignificantly decreased with increasing the air-drying temperature from 18 to 50 °C (P > 0.05). The properties of MTGase-treated films were also affected by the additional pre-incubation of film-forming solutions with MTGase before casting. Furthermore, the aggregation of SPI or its components induced by MTGase has been proved to mainly account for the influence of processing parameters on the properties of SPI films (MTGase-treated). Thus, low concentration of enzyme, alkaline pH range and low air-drying temperature, at which conditions the MTGase-induced aggregation of SPI in film-forming solutions could be in some extent inhibited or delayed, might facilitate the improvement of the properties of SPI films by MTGase, especially the mechanical and surface hydrophobic properties.Industrial relevanceThe development of biodegradable protein film has attracted a lot of attention worldwide. The enzymatic cross-linking induced by transglutaminase has been confirmed to improve mechanical and surface hydrophobic properties of cast films from most of food proteins, including soy proteins. Results of this study show that, the improvement of properties of cast films of soy proteins by transglutaminase treatment is largely dependent upon many processing parameters, e.g., enzyme concentration, the pH of film-forming solution and temperature.  相似文献   

2.
Soy protein isolate (SPI) was incubated with microbial transglutaminase (MTGase) enzyme for 5 (SPI/MTG(5)) or 24 (SPI/MTG(24)) h at 40 °C and the cross-linked SPI obtained was freeze-dried, and heated with 2% (w/v) ribose (R) for 2 h at 95 °C to produce combined-treated gels. Longer incubation period resulted in more compact and less swollen SPI particle shape when reconstituted with sugar solution. Thus, this MTGase treatment affected samples in terms of flow behaviour and gelling capacity. Rheological study showed different gelling profiles with the cross-linking treatments and combined cross-linked SPI gave a higher G′ value compared to single treated samples. These are due to the formation of additional ε-(γ-glutamyl)lysine bonds and “Maillard cross-links” within the SPI protein network during the MTGase incubation and heating in the presence of ribose (i.e. reducing sugar). Network/non-network protein analysis found that network protein increased with cross-linking treatment, which also resulted in different SDS–PAGE profiles. As in non-network protein fraction, A4 subunit was suggested to become part of the network protein as a result of combined cross-linking.  相似文献   

3.
The thermal properties of rice (Oryza sativa) seed globulin were studied by differential scanning calorimetry (DSC) under the influence of various medium conditions. The denaturation temperatures (Td) of crude and purified rice globulin were 97.6 and 98.5 °C, respectively. Increasing salt concentration enhanced thermal stability of rice globulin. The effect of chaotropic anions on DSC characteristics of rice globulin followed the order of the lyotropic series indicating progressive decreases in both Td and enthalpy (ΔH). Extreme pHs and protein perturbants (sodium dodecyl sulfate at above 20 mM, dithiothreitol, urea and ethylene glycol) caused marked protein denaturation and loss of thermal stability. In contrast, N-ethylmaleimide and SDS at below 20 mM exerted a stabilizing effect on rice globulin. Pre-heat treatments led to partial unfolding of rice globulin, and the level of denaturation increased progressively with increasing heating time.  相似文献   

4.
The current study evaluates the effect of temperature on α-glucosidase activity, following incorporation of the enzyme into a whey protein matrix through spray drying. Thermomechanical characterization of the matrix was achieved using the techniques of modulated temperature differential scanning calorimetry and small-deformation dynamic mechanical analysis. As the concentration was raised from 75 to 94% (w/w), denaturation of the protein occurred at increasing temperatures. In contrast, denaturation was not observed in calorimetric scans after spray drying. The glass transition temperature (Tg) measured in the dried particles using dynamic mechanical analysis was approximately 40 °C. An optimized procedure was developed whereby α-glucosidase and its substrate p-nitrophenyl α-d-glucopyranoside were incorporated into the whey matrix. The effect of temperature on enzymatic catalysis was investigated and, below 40 °C, activity was low and relatively independent of temperature. However, the rates of product formation markedly accelerated as temperatures were increased beyond Tg. These novel observations strongly emphasize the pronounced effect of mechanical Tg of the protein matrix on enzymatic activity.  相似文献   

5.
The particle gun method for investigating the initiation of stickiness of dairy powders was examined using skim milk powder (SMP). The point at which significant stickiness occurred was at a constant temperature above the glass transition temperature (Tg) of amorphous lactose regardless of the temperature and relative humidity (RH) conditions of the air in the particle gun. This point has been called (TTg)critical. The initial water activity of SMP did not significantly affect (TTg)critical, confirming that stickiness is a surface phenomenon. Changing the particle feed rate did not effect (TTg)critical or the rate at which the powder accumulated on the target plate. The errors in measuring the value of (TTg)critical and the rate of stickiness development [slope of the deposition line versus (TTg)] for SMP were found to be 33.6 ± 0.8 °C and 3.1 ± 0.7% deposition °C?1, respectively, after standardisation of the ambient air conditions around the powder feeder and the initial water activity of the SMP.  相似文献   

6.
The influence of soy protein isolate (SPI) substitution for sodium caseinate (SC) on the properties of cold-set (4 °C) and heat-induced gels of pork myofibrillar protein (MP) incubated with microbial transglutaminase (TG) was investigated. The strength of cold-set MP–SC gels (formed in 0.45 M, NaCl, 50 mM phosphate buffer, pH 6.25) increased with time of TG incubation, but those gels with more than 66% SPI substituted for SC had a >26% reduced strength (P < 0.05). Upon cooking, both incubated and non-incubated protein sols were quickly transformed into highly elastic gels, showing up to 6000 Pa in storage modulus (G′) at the final temperature (72 °C). However, no differences (P < 0.05) in G′ were observed between heated samples with SPI and SC. Myosin heavy chain, casein and soy proteins gradually disappeared with TG incubation, contributing to MP gel network formation. Both cold-set and heat-induced gels had a compact protein matrix, attributable to protein cross-linking by TG.  相似文献   

7.
When studying the glass-to-rubber transition inside natural materials, it is important to take into account not only the moisture content but also the moisture distribution over the components in the material. We measured the Tg of protein and starch isolated from barley at different moisture contents using differential scanning calorimetry (DSC) (heating rate 10 °C/min) and by thermo mechanical compression tests (TMCT) (heating rate 2 °C/min). The measurement of the Tg of partially crystalline materials, such as barley starch, is more difficult using TMCT because the mechanical effect of expansion of these materials is smaller. For both measurement sets the glass transition lines were modeled using the Gordon–Taylor equation. The lines were adapted for the differences in moisture content over the endosperm by using the sorption isotherms of isolated barley starch and protein and whole barley endosperm. The glass transition lines measured by TMCT were closer together than the ones measured by DSC.  相似文献   

8.
Although soy proteins are known to have a deleterious effect on gluten thermosetting gelation, the causes are still poorly understood. Different sources of soy protein isolates (SPI) were used to investigate the interactions between gluten and soy proteins during hydro-thermal treatments. Commercial SPI and isolates prepared from soybean lines with different subunit composition were used to study the influence of protein denaturation and subunit composition on thermoset gel formation. Rapid Visco Analyser analysis showed that replacement of gluten with more than 1% SPI decreased the peak viscosity and interfered with formation of thermoset gels. However, peak viscosity was higher for 11% gluten + 2% SPI than for 11% gluten alone, suggesting a cooperative effect. After heating and cooling, 11% gluten + 2% SPI rich in A1 and A2 subunits formed a coherent thermoset gel suggesting that the cysteine residue content of soy proteins can affect gel formation.  相似文献   

9.
The effect of Ultra-High Pressure Homogenization (UHPH, 100–300 MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15 MPa). CH emulsions were prepared with non-heated and heated (95 °C for 15 min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200 MPa with 20% of oil were the most stable due to low particle size values (d3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology.  相似文献   

10.
Lactulose has been successfully synthesized by dual-enzymatic method in organic-aqueous two-phase media using lactose and fructose as the raw materials. Cyclohexane–buffer system C6H12:buffer = 95:5 (v/v) was employed as the organic-aqueous media for the reaction. The dual-enzymatic system was consisted of immobilized lactase (IL) and immobilized glucose isomerase (IGI). Immobilized lactase was prepared by cross-linking the free lactase into Fe3O4-chitosan magnetic microspheres. The main enzymatic reaction parameters were investigated, including reaction temperature (T), pH value and reaction time (t). Under the optimum reaction conditions, i.e., lactose 0.8 g mL?1, fructose 0.1 g mL?1, IL 0.1 g mL?1, IGI 0.05 g mL?1, T = 30 °C, pH = 8.0 and t = 2 h, the obtained highest lactulose yield was approximately 151 g L?1 and the corresponding productivity was 75.5 g L?1 h?1. Experimental results indicated that the organic-aqueous media can significantly promoted the transglycosidation activity of lactase and therefore improve the lactulose yield. The possible reaction mechanism of the synthesis of lactulose using IL and IGI in two-phase system was also proposed.  相似文献   

11.
This study investigated the physical, chemical and sensory characteristics of non-fat yogurts treated with microbial transglutaminase (MTGase) at varying concentrations from 0 to 0.5 g L−1. Also, the effect of enzyme inactivation prior to fermentation on the selected properties of the yogurts was studied. Acid development rate was reduced with increasing MTGase doses. Cross-linking of milk proteins by MTGase had a growth-slowing effect on yogurt starter bacteria, which was more pronounced at higher concentrations. Physical properties of the yogurts were improved by MTGase throughout 21-day storage; on the contrary, the production of acetaldehyde was slowed down by increasing MTGase concentrations during the same period. Principal component analysis (PCA) and hierarchial cluster analysis (HCA) clearly differentiated the samples with added MTGase at lower (⩽0.3 g L−1) and higher (0.4–0.5 g L−1) concentrations regarding the physical and sensory properties. The physical and sensory properties of non-fat set yogurt could be improved by incorporating MTGase up to a level of 0.3 g L−1.  相似文献   

12.
In this study, electrospun soy protein isolate (SPI) nanocomposite fiber mats were developed utilizing the lowest concentration possible of poly(ethylene oxide) (PEO) containing the highest levels of anthocyanin-rich red raspberry (Rubus strigosus) extract [ARRE; 20% raspberry powder in 95% ethyl alcohol/water/85% lactic acid (80:19:1; v/v/v)]. Variations in the physicochemical attributes of SPI nanofiber mats were investigated as a function of adding ARRE before and after protein denaturation. The electrical conductivity of fiber-forming solutions significantly decreased with increasing ARRE. Scanning electron microscopy (SEM) imaging did not reveal noticeable overall microstructural morphological differences (seen as beads-on-fiber structures) but slightly altered the density of beads in the electrospun SPI fibers. Fourier transform infrared (FTIR) spectroscopy provided insights into the hydrogen bonding interactions between ARRE and SPI in relations to the processing methods used. Specifically, the addition of ARRE after denaturation of SPI caused the amide I bond at 1656 cm 1 of SPI to dramatically increase, which indicates ARRE induced CO stretching vibration of soy protein, possibly due to the attachment of polyphenols in ARRE to the hydrophobic pockets of the soy protein side-chains. Simultaneously, the addition of ARRE after SPI denaturation imparts fiber forming solutions with a significant higher level of bioactive anthocyanins and a greater antibacterial activity against Staphylococcus epidermidis, this illustrates that anthocyanin-rich plant extracts could serve as new biological ingredients to create novel active/functionalized SPI-based nanomaterial in food systems.  相似文献   

13.
This study aimed to investigate the effect of a synbiotic fermented soy product supplemented with okara (a by-product from soybean) on cardiovascular disease risk markers in healthy men. In a randomized, double-blinded, placebo controlled trial, thirty-six normocholesterolemic men were assigned to two groups. Subjects consumed daily 100 g of soy-based product fermented with Lactobacillus acidophilus La-5, Bifidobacterium animalis subsp. lactis Bb-12, and Streptococcus thermophilus (starter culture) (synbiotic group — S) (n = 18) or 100 g of unfermented soy-based product (placebo group — P) (n = 18) for 8 weeks. Fasting blood samples and anthropometric measurements were collected at the baseline (T0), the end of week 4 (T4), and the end of week 8 (T8). Serum lipids, C-reactive protein, fibrinogen, and electronegative LDL were also analysed on T0, T4, and T8. During the period of daily soy-based product consumption (from T0 to T8) the LDL-C mean decreased significantly (p < 0.05) in group S, resulting in a significant (p < 0.05) improvement of the LDL-C/HDL-C ratio. Comparing mean differences (T8–T0) between the two groups, the trend of LDL-C and LDL-C/HDL-C ratio reductions was higher in group S (14.1 mg/dL and 0.38 mg/dL, respectively) than group P (4.9 mg/dL and 0.17 mg/dL, respectively) (p > 0.05). Our results suggest limited lipid-lowering effects of synbiotic soy-based product supplemented with okara on cardiovascular risk markers in normocholesterolemic men.  相似文献   

14.
In the present study, the potential of soy protein isolate (SPI)–κ-carrageenan (κ-CG) complex as a protective carrier for quercetagetin was investigated at different pH values (pH 2.3 and 6.5). The particle size of the ternary aggregates was slightly increased at pH 2.3, yet dramatically decreased at pH 6.5 with increasing quercetagetin concentration. Moreover, the negative ζ-potential of the ternary aggregates was increased significantly (p < 0.05) at pH 6.5. The addition of quercetagetin to the SPI–κ-CG complex could highly quench the intrinsic fluorescence of SPI. Circular dichroism spectra further suggested that the bound quercetagetin could induce the rise of β-sheet and β-turn contents at the cost of α-helix and unordered coil fractions of SPI. In addition, quercetagetin could increase the viscoelasticity of the ternary aggregates at both pH. Furthermore, the SPI–κ-CG complex was found to be superior to single SPI or κ-CG in terms of improving light stability and radical scavenging ability of quercetagetin.  相似文献   

15.
《LWT》2005,38(1):7-14
Effects of high-pressure treatment on the modifications of soy protein in soy milk were studied using various analytical techniques. Blue shifts of λmax could be observed in the fluorescence spectra. Spectrofluorimetry revealed that the soy protein exhibited more hydrophobic regions after high-pressure treatment. Electrophoretic analysis showed the change of soy protein clearly and indicated that soy proteins were dissociated by high pressure into subunits, some of which associated to aggregate and became insoluble. High-pressure denaturation occurred at 300 MPa for β-conglycinin (7S) and at 400 MPa for glycinin (11S) in soy milk. High pressure-induced tofu gels could be formed that had gel strength and a cross-linked network microstructure. This provided a new way to process soy milk for making tofu gels.  相似文献   

16.
《Meat science》2008,78(4):608-615
Instrumental, chemical and sensory parameters of cooked pork ham were evaluated. Principal component analysis was carried out on the basis of the instrumental variables related to colour and texture. The four PCs account for almost 94% of the total variance in the data set. The PCA only separated 3 hams with a1 > 10. Hardness was correlated with non-collagen muscle protein (P  0.01), gumminess (P  0.01) and ash (P  0.05). Sensory evaluated tenderness showed positive significant correlation with L1 (P  0.01). The most important colour parameter seems to be a1, which was negatively correlated with sensory evaluated parameter colour (P  0.01). The PCA performed on all parameters (sensory, chemical and textural) discriminated two groups of hams differing in non-collagen muscle protein content and hardness.  相似文献   

17.
Oat protein isolate (OPI) was extracted in 0.015 N NaOH and acetylated or succinylated. The thermal analysis of the isolate showed a glass transition (Tg) at 43.4 °C and ΔCp of 0.102 J/g/°C. The positive net charge of OPI and the positive or neutral charge of the modified OPI were apparent from the free capillary zone electrophoresis (FZCE) profiles. Acetylation significantly lowered foaming and emulsifying properties of OPI, while succinylation showed the highest foaming capacity, foam stability, and emulsion stability. Acetylated OPI showed the highest surface hydrophobicity compared to the other samples, while OPI was the most soluble of all. The water holding capacity of all samples analyzed was the same except for acetylated-crosslinked (ACXL). The surface tension test confirmed that unmodified and modified OPI possessed surface activity and the equilibrium surface tensions decreased sharply with increasing protein concentration and leveled off to a constant value. The elastic modulus, G′, for the acetylated OPI suspension exhibited the highest value, while the G′ of the crosslinked (XLOPI) had the lowest. The plateau of G′, was 2961 Pa, 920 Pa, 223 Pa, 41 Pa, and 1.8 Pa for the ACOPI, ACXL, SOPI, and XL, respectively.  相似文献   

18.
The effects of calcium and high pressure (HP) treatment on the thermal properties of soybean proteins were analyzed in soybean protein isolate (SPI), a β-conglycinin-enriched fraction (7SEF), a glycinin-enriched fraction (11SEF), and whey protein concentrate (WPC). For β-conglycinin, the temperature of denaturation (Td) decreased with up to 12.5 mM or 6.2 mM calcium in SPI and 7SEF, respectively. This parameter increased when calcium was more concentrated. The Td of glycinin increased for every assayed calcium concentration. The values of changes in Td (ΔTd) depended on calcium concentration and the proportion of β-conglycinin and glycinin in the samples. Activation energy decreased for glycinin in the presence of calcium. HP treatment promoted denaturation of β-conglycinin and glycinin. Calcium protected both proteins in SPI, 7SEF and 11SEF at 200 MPa, and protected glycinin in SPI and 7SEF at 400 and 600 MPa. Nevertheless, calcium increased the degree of denaturation of β-conglycinin in 7SEF at 600 MPa. In the absence of calcium, partially-HP-denatured polypeptides exhibited the same or lower Td than controls, whereas in its presence, they exhibited higher Tds than their respective controls.  相似文献   

19.
Antimicrobial papers were prepared by coating paper with soy protein isolate (SPI) solution as inclusion matrix of carvacrol, an antimicrobial agent. Addition of carvacrol (30% w/w of SPI) to SPI solution (10% w/v) prepared at 25 °C induced soy protein aggregates and viscosity decrease. Heat treatment (50, 70, 90 °C) of SPI solutions and carvacrol addition improved homogeneity reduced particles size and increased viscosity of solutions. The aggregated structure of SPI in the presence of carvacrol at 25 °C may play the role of a trapping structure leading to low carvacrol losses during coating and drying process of paper (9.6% against 37% after heat treatment at 90 °C) and to lower release rates specially the first three days (0.04 g/m2/day and 0.31 g/m2/day when SPI coating solutions were prepared at 25 and 90 °C, respectively). Regardless of the heat treatments received by the SPI solutions, residual carvacrol quantities in the coated papers after 50 days ranged between 0.6 and 0.7 g/m2.  相似文献   

20.
The gelation and gel properties of glycinin-rich and β-conglycinin-rich soy protein isolates (SPIs) induced by microbial transglutaminase (MTGase) were investigated. At the same enzyme and protein substrate concentrations, the on-set of gelation of native SPI and the viscoelasticity development of correspondingly formed gels depended upon the relative ratio of glycinin to β-conglycinin. The turbidity analysis showed that the glycinin components also contributed to the increase in the turbidity of SPI solutions incubated with MTGase (at 37 °C). Textural profile analysis indicated that the glycinin components of SPIs principally contributed to the hardness, fracturability, gumminess and chewiness values of corresponding gels, while the cohesiveness and springness were mainly associated with the β-conglycinin components. The strength of MTGase-induced gels of various kinds of SPIs could be significantly improved by the thermal treatment. The protein solubility analyses of MTGase-induced gels, indicated that besides the covalent cross-links, hydrophobic and H-bondings and disulfide bonds were involved in the formation and maintenance of the glycinin-rich SPI gels, while in β-conglycinin-rich SPI case, the hydrophobic and H-bondings were the principal forces responsible for the maintenance of the gel structure. The results suggested that various kinds of SPI gels with different properties could be induced by MTGase, through controlling the glycinin to β-conglycinin ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号