首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Commercial samples of fresh and mature Halloumi cheeses made from ovine or bovine milk were studied in order to establish their chemical, microbiological and sensory characteristics. Significant differences were observed between the two types of Halloumi cheese both when fresh and mature. The free volatile fatty acid (FVFA) content of the cheeses increased with maturation from 483 to 1356 mg kg−1 for the ovine product, but lower values (380–1248 mg kg−1) were found in the bovine cheese. During maturation for 40 days, Enterococcus faecium, which dominated the microflora of fresh ovine cheese, was replaced by lactobacilli, including a new species, Lactobacillus cypricasei, which was not found in the bovine samples. Fewer than 100 cfu g−1 lactic acid bacteria (LAB) were present in the fresh bovine cheeses, but a microflora dominated by lactobacilli developed with time. Yeast counts in the mature ovine and bovine cheeses reached 2.3–2.8×105 cfu g−1 and, as some of the yeasts were proteolytic and/or lipolytic, it was assumed that they were having a positive impact of the flavour of the cheeses. The sensory panel distinguished significant differences in texture and flavour between the fresh and mature samples of both ovine and bovine cheeses and, overall, there was a significant preference for the ovine brand.  相似文献   

2.
This work was aimed at enumerating the viable microorganisms in ripened Serra da Estrela cheeses, manufactured from both refrigerated and non-refrigerated milk, in various dairies located throughout the demarcated region. Scanning electron microscopy was used to analyze the microstructure, and thus aid in understanding possible differences in their microbiological profile. The cheeses were allowed to ripen under controlled conditions, and sampled at 60, 90, 120, 150 and 180 d following manufacture. Viable numbers of lactic acid bacteria, staphylococci, Enterobacteriaceae and yeasts were obtained following standard plate counting on a number of selective media. Lactococcus was the most abundant genus (above 108 cfu g−1 of cheese) up to 120 d of ripening. No significant microstructural differences were observed in cheeses manufactured in different dairies over the ripening process. However, microstructural differences were apparent between cheeses manufactured with refrigerated versus non-refrigerated milk.  相似文献   

3.
The effect of two commercially available adjunct cultures, LBC 80 (Lactobacillus casei subsp. rhamnosus) and CR-213 (containing Lactococcus lactis subsp. cremoris and Lc. lactis subsp. lactis) on the proteolysis in low-fat hard ewes’ milk cheese of Kefalograviera-type was investigated. Two controls, a full-fat cheese (306 g kg−1 fat, 378 g kg−1 moisture) and a low-fat cheese (97 g kg−1 fat, 486 g kg−1 moisture, made using a modified procedure), were also prepared. The effect of adjunct culture on proteolysis, as examined by polyacrylamide gel electrophoresis of cheese and water soluble cheese extracts, was marginal. The reverse-phase HPLC peptide profiles of the water soluble extracts from low-fat cheeses were similar although some quantitative differences were observed between low-fat control cheese and experimental cheeses. The fat content as reflected by the differences in peptide profiles affected the pattern of proteolysis. Proteolysis, as measured by the percentage of total nitrogen soluble in water or in 120 g L−1 trichloroacetic acid, was significantly (P<0.05) affected by the addition of adjunct cultures. Furthermore, the adjunct cultures enhanced the production of low molecular mass nitrogenous compounds; the levels of total nitrogen, soluble in 50 g L−1 phosphotungstic acid, and of free amino acids were significantly (P<0.05) higher in the low-fat experimental cheeses than in the low-fat control cheese.  相似文献   

4.
《International Dairy Journal》2005,15(6-9):733-740
Fat-derived flavour compounds in four different batches of Gouda cheese were monitored over 2 years of ripening. The total free fatty acid (FFA) concentrations increased from 200–400 to 700–1200 mg kg–1 dry matter, in a fairly linear manner. Long-chain FFAs were predominant in the curds, but relatively more short and intermediate chain fatty acids were released during ripening. The production of δ-lactones was rapid initially, but reached a plateau at 55 mg kg–1 dry matter in about 20 weeks. The production of γ-lactones was slower and also decreased, but was noticeable over a longer time, giving 5.5 mg kg–1 dry matter in 90 weeks. Ethyl ester formation varied substantially. Ketone levels increased only very slightly during ripening; long chain alcohols and aldehydes were not found. Some individual FFAs and lactones exceeded reported flavour thresholds, and are expected to influence the flavour of Gouda cheese.  相似文献   

5.
《International Dairy Journal》2000,10(5-6):383-389
The mesophilic lactobacilli colonizing Fiore Sardo ewe's milk cheese were characterized. They seemed to be the dominant non-starter lactic acid bacteria composing its natural microflora, with a viable cell number varying from 105 CFU g−1 (1-day-old cheese) to 108 CFU g−1 (30-day-old cheese) and then slowly decreasing up to 104 CFU g−1 after 7 months’ ripening. Considering the relevance of mesophilic lactobacilli in affecting the cheese ripening, a PCR-based taxonomic identification of the Lactobacillus species isolated was performed. Cheese samples were collected from 3 farms and 457 isolates from cheeses at different ripening times were analysed with species-specific primers for L. plantarum, L. casei group, L. paracasei, L. casei, L. rhamnosus, L. pentosus, L. paraplantarum, L. curvatus, L. graminis and L. sake. L. plantarum and L. paracasei were the most frequently detected species. Moreover, the development and the evolution during ripening of the facultatively heterofermentative Lactobacillus species (FHL) were different in the three batches of cheese.  相似文献   

6.
Cheddar cheeses with the different fat contents were made in triplicate and ripened at 4°C for 30 d and at 7°C for the remainder of the 180-d investigation period. The cheeses were designated: full-fat (FFC), 300 g kg−1; reduced-fat (RFC), 219 g kg−1; half-fat (HFC), 172 g kg−1; and low-fat (LFC), 71.5 g kg−1. A decrease in the fat content from 300 to ≤172 g kg−1 resulted in significant (P<0.05) decreases in contents of moisture in non-fat substance and pH 4.6 soluble N (expressed as % total N), and increases in the contents of moisture, protein, intact casein and free amino acids. Reduction in fat content resulted in an increase in the volume fraction of the casein matrix and a decrease in the extent of fat globule clumping and coalescence. The mean values of fracture stress and firmness for the FFC were significantly lower than those of the RFC and HFC, which had similar values; the values for the LFC exceeded the limits of the test and were markedly higher than those of the other cheeses at all times. On baking the cheese, reduction in fat content resulted in significant increases in the mean melt time (time required for shred fusion) and apparent viscosity and a decrease in the mean flowability of the melted cheese. The stretchability of the FFC increased most rapidly and, at ∼15 and 30 d, attaining mean values which were significantly higher than those of the other cheeses. Thereafter the stretchability of the FFC decreased progressively to values that were significantly (i.e. at 150 d) or numerically (i.e., at 180 d) lower than those of the RFC and HFC. At ripening times ≥15 and ≤90 d, the stretchability of the LFC was significantly lower than that of the RFC, and significantly or numerically lower than the HFC.  相似文献   

7.
Seventeen strains of mesophilic lactic acid bacteria, isolated from cheese (non-starter lactic acid bacteria, NSLAB) or sourdough, were used individually as adjunct cultures in a Caciotta cheese model system. Adjunct cultures were monitored by randomly amplified polymorphic DNA analysis and their cell counts mainly varied from ca. 9.0 to 8.0 log cfu g−1 throughout 36 days of ripening. Adjunct cultures influenced differently cheese proteolysis. Both NSLAB and sourdough strains caused an extensive secondary proteolysis; however, some NSLAB strains produced the highest concentration of free amino acids. Principal component analysis (PCA) differentiated cheeses manufactured with NSLAB strains Lactobacillus parabuckneri B9FST, Lb. paracasei B61F5, Lb. curvatus 2768 and Lb. rhamnosus ATCC 7469 based on the accumulation of Lys, Glu, Phe, Hist, Asp and Met. Assessment of cheese lipolysis showed that: (i) highest concentrations of free fatty acids (FFA) were found with NSLAB strains Lb. rhamnosus ATCC 7469 and Lb. casei subsp. pseudoplantarum 2742 (ca. 10 500 mg kg−1); (ii) PCA differentiated cheeses manufactured with NSLAB strains Lb. rhamnosus ATCC 7469 and Lb. casei subsp. pseudoplantarum 2742 based on the accumulation of palmitic (C16:0) and linoleic (C18:2) acids, and those with Lb. curvatus 2768 and Lb. parabuckneri B9FST based on the high concentration of short chain FFA; (iii) the cheese made with sourdough strain Lb. sanfranciscensis CB1 had the highest levels of unsaturated FFA.  相似文献   

8.
Low-fat Mozzarella cheeses containing 6% fat were made by pre-acidification of milk with citric acid to pH 6.1 and using encapsulated ropy or non-ropy exopolysaccharide (EPS) producing Streptococcus thermophilus. Moisture retention, changes in texture profile analysis (TPA), meltability and stretchability of cheese, and changes in colour, surface scorching and shred fusion were analysed after baking over 90 days (d). Control cheeses and those made from pre-acidified milk without EPS cultures had the lowest moisture content at 54.84% and 55.28%, respectively. Control cheeses were hardest and their meltability and stretchability were initially low. Hardness was reduced and the melt and stretch distances increased with time. When baked, control cheeses showed incomplete shred fusion. Pre-acidification reduced hardness and increased meltability. Capsular- and ropy-EPS were quantified at 30.42 and 30.55 mg g−1 of cheese, respectively, and increased moisture retention in pre-acidified cheese to 56.67% and 56.21%, respectively. These cheeses were softer and exhibited lower springiness. Greater meltability was observed initially but became similar to control cheeses after 90 d of storage. When baked after 45 d of storage, cheeses containing EPS producing cultures showed improved shred fusion, meltability and a reduction in surface scorching.  相似文献   

9.
Consumption of virgin olive oil (VOO) is highly recommended due to its human health benefits. Brazil is now beginning to experimentally produce VOO, and there are no data on its chemical profile. The aim of this work was to determine the phenolic compound, tocopherol and fatty acid contents of 17 monovarietal VOOs produced from olive varieties cultivated in the southeast region of Brazil during two crop years. The chemical composition of Brazilian VOO resembles that found in the literature for well-established VOOs. The analyzed compounds comprised palmitic acid (6–12%), stearic acid (1.6–2.2%), oleic acid (70–84%), linoleic acid (3.2–11.7%), α-linolenic acid (0.6–1.4%), tyrosol (NQ–155 mg kg 1), (+)-pinoresinol (2.9–23 mg kg 1), hydroxytyrosol (ND–38 mg kg 1), luteolin (ND–2.2 mg kg 1), α-tocopherol (29–233 mg kg 1), β-tocopherol (ND–9.6 mg kg 1), and γ-tocopherol (ND—19 mg kg 1). There was a significant difference in the contents of almost all of the analyzed compounds between the two crop years. Principal component analysis demonstrated that some varieties can be differentiated from one another by chemical composition. The results indicated that some Brazilian monovarietal VOOs are promising and that further studies will help to improve the quality of Brazilian VOO.  相似文献   

10.
《International Dairy Journal》2005,15(6-9):893-900
The combined effect of high-pressure (HP) treatment and bacteriocin-producing lactic acid bacteria (BP-LAB) on the survival of Listeria monocytogenes Scott A in cheeses made from raw milk that was inoculated with the pathogen at 4.80 log cfu mL−1, a commercial starter and one of seven strains of BP-LAB was investigated. On day 3, the counts of L. monocytogenes were 7.03 log cfu g−1 in a control cheese (without BP-LAB, not HP treated), 6.06–6.74 log cfu g−1 in cheeses with BP-LAB, 6.13 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 300 MPa, 2.01 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 500 MPa, 3.83–5.43 log cfu g−1 in cheeses with BP-LAB and treated on day 2 at 300 MPa, and 1.81 log cfu g−1 or less in cheeses with BP-LAB and treated on day 2 at 500 MPa. HP treatment was more effective on day 51 than on day 2.  相似文献   

11.
Galotyri is a traditional Greek soft acid-curd cheese, which is made from ewes’ or goats’ milk and is consumed fresh. Because cheese processing may allow Listeria monocytogenes post-process contamination, this study evaluated survival of the pathogen in fresh cheese during storage. Portions (0.5 kg) of two commercial types (<2% salt) of Galotyri, one artisan (pH 4.0±0.1) and the other industrial (pH 3.8±0.1), were inoculated with ca. 3 or 7 log cfu g−1 of a five-strain cocktail of L. monocytogenes and stored aerobically at 4°C and 12°C. After 3 days, average declines of pathogen's populations (PALCAM agar) were 1.3–1.6 and 3.7–4.6 log cfu g−1 in cheese samples for the low and high inocula, respectively. These declines were independent (P>0.05) of the cheese type or the storage temperature. From day 3, however, declines shifted to small or minimal to result in 1.4–1.8 log cfu g−1 of survivors at 28 days of storage of all cheeses at 4°C, indicating a strong “tailing” independent of initial level of contamination. Low (1.2–1.7 log cfu g−1) survival of L. monocytogenes also occurred in cheeses at 12°C for 14 days, which were prone to surface yeast spoilage. When ca. 3 log cfu g−1 of L. monocytogenes were inoculated in laboratory scale prepared Galotyri of pH ≅4.4 and ≅3% salt, the pathogen died off at 14 and 21 days at 12°C and 4°C, respectively, in artisan type cheeses fermented with the natural starter. In contrast, the pathogen survived for 28 days in cheeses fermented with the industrial starter. These results indicate that L. monocytogenes cannot grow but may survive during retail storage of Galotyri despite its low pH of or slightly below 4.0. Although contamination of Galotyri with L. monocytogenes may be expected low (<100 cfu g−1) in practice, that long-term survival of the pathogen in commercial cheeses was shown to be unaffected by the artificial contamination level (3 or 7 logs) and the storage temperature (4°C or 12°C), which should be a concern.  相似文献   

12.
Cheeses manufactured in certified dairies in the Portuguese region of Serra da Estrela, using refrigerated and non-refrigerated raw sheep milk, were quantitatively evaluated in terms of indigenous microflora and volatile compounds during a ripening period of up to 6 mo. Viable counts were obtained for lactococci, lactobacilli, leuconostoc, enterococci, yeasts, Enterobacteriaceae and staphylococci; analyses of volatiles were performed by chromatography after solid-phase micro-extraction. Treatment of all analytical data produced by principal component analysis revealed correlations between the major microbial groups present in cheese and patterns of volatiles generated. End products resulting from the degradation of sugars, free amino acids and glycerides constituted the predominant volatiles of Serra da Estrela cheeses. Among volatile, short-chain carboxylic acids detected were acetic, propionic, iso-butyric and iso-valeric acids; these compounds are known to be breakdown products of Gly, Ala and Ser, of Thr, of Val, and of Ile, respectively, following oxidative deamination. Semi-volatile fatty acids and their corresponding ethyl esters appeared in the cheese, probably as a result of the activity of lipases produced by yeasts and Enterobacteriaceae. These ethyl esters, which are responsible for fruity flavours, were especially pronounced in cheeses manufactured from refrigerated milk.  相似文献   

13.
《Food microbiology》2004,21(3):343-349
One hundred and fifty-eight strains of lactic acid bacteria isolated from Algerian raw goat's milk were identified and technologically characterized. Five genera were found: Lactobacillus (50.63%), Lactococcus (25.94%), Streptococcus (14.56%), Leuconostoc (7.59%) and Pediococcus (1.26%). The predominant species were Lactococcus lactis (32 strains), Streptococcus thermophilus (23 strains), Lactobacillus bulgaricus (19 strains), Lb. helveticus (16 strains) and Lb. plantarum (14 strains).Approximately 39% of the lactic acid bacteria isolated produced more than 0.6% lactic acid (w/v) after 18 h of incubation, and belonged to the Lactococcus and Lactobacillus genera. The highest proteolytic activity was approximately 3 mg tyrosine l−1 for mesophilic strains and nearly 5 mg tyrosine l−1 for thermophilic lactobacilli after 72 h. High aromatic activity (more than 0.8 mg diacetyl l−1 after 16 h) was detected in 14% of the strains.Nine strains were used to make dairy products (a yoghurt-like product and Edam-type cheese) on a pilot scale in the laboratory. The best-liked organoleptic characteristics were noted in a yoghurt produced with a mixed culture made up of S. thermophilus (strain 16TMC+) and Lb. helveticus (strain 20TMC) and in a cheese made with a starter composed of Lc. lactis subsp. lactis (strain 10MCM) and L. lactis subsp. lactis (V.P. +) (strain 19MCM).  相似文献   

14.
Cheddar cheeses were made from pasteurised milk (P), raw milk (R) or pasteurised milk to which 10 (PR10), 5 (PR5) or 1 (PR1) % of raw milk had been added. Non-starter lactic acid bacteria (NSLAB) were not detectable in P cheese in the first month of ripening, at which stage PR1, PR5, PR10 and R cheeses had 104, 105, 106 and 107 cfu NSLAB g−1, respectively. After ripening for 4 months, the number of NSLAB was 1–2 log cycles lower in P cheese than in all other cheeses. Urea–polyacrylamide gel electrophoretograms of water-soluble and insoluble fractions of cheeses and reverse-phase HPLC chromatograms of 70% (v/v) ethanol-soluble as well as -insoluble fractions of WSF were essentially similar in all cheeses. The concentration of amino acids were pro rata the number of NSLAB and were the highest in R cheese and the lowest in P cheese throughout ripening. Free fatty acids and most of the fatty acid esters in 4-month old cheeses were higher in PR1, PR5, PR10 and R cheeses than in P cheese. Commercial graders awarded the highest flavour scores to 4-month-old PR1 cheeses and the lowest to P or R cheese. An expert panel of sensory assessors awarded increasingly higher scores for fruity/sweet and pungent aroma as the level of raw milk increased. The trend for aroma intensity and perceived maturity was R>PR10>PP5>PR1>P. The NSLAB from raw milk appeared to influence the ripening and quality of Cheddar cheese.  相似文献   

15.
《International Dairy Journal》2005,15(6-9):571-578
The production of biogenic amines (BA) during the manufacturing and ripening of sheep milk Pecorino Abruzzese cheeses prepared from raw milk without starter culture (A) and from pasteurized milk with added starter (B) were compared. At the end of ripening (60 days), the total BA contents of cheeses of batches A and B were 697 and 1086 mg kg−1, respectively; the dominant BA were different. Single isolates of enterococci, pseudomonads and Enterobacteriaceae were screened for their potential to produce BA. Qualitative tests indicated a large spread of BA-forming cultures among the members of the Enterobacteriaceae and lactic acid bacteria (LAB). Differences among the levels of BA produced in UHT milk by representative isolates of coliforms, Pseudomonas and LAB were observed in relation to the microbial group or the isolate. The results emphasize the need to improve the general hygienic conditions of Pecorino Abruzzese cheese manufacture and control the indigenous bacterial population.  相似文献   

16.
The viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 microencapsulated by either an extrusion or an emulsion technique and used in white-brined cheese was monitored. Both microencapsulation techniques were effective in keeping the numbers of probiotic bacteria higher than the level of the therapeutic minimum (>107 cfu g?1). While the counts of probiotic bacteria decreased approximately 3 log in the control cheese in which probiotics were used as free cells, the decrease was more limited in the cheeses containing microencapsulated cells (approximately 1 log). Medium- and long-chain free fatty acid contents of the cheeses with immobilized probiotics were much higher than in the control cheese. Similarly, cheeses made with immobilized probiotics contained higher acetaldehyde and diacetyl levels than the control. Experimental cheeses containing microencapsulated probiotics were not different from the control cheese in terms of sensory properties.  相似文献   

17.
Opportunities for the production of milk and dairy products enriched with cis-9, trans-11 conjugated linoleic acid (CLA) were investigated. Eighteen mid-lactation cows were used in a continuous-design for 7 weeks. During the first week, cows received grass silage ad libitum supplemented with 10 kg per day of a cereal-based concentrate (control) that was replaced with a concentrate containing 50 g kg−1 of rapeseed oil (RO). Changes in milk fatty acid composition were monitored on a weekly basis and milk produced was used to manufacture Edam cheese and butter. Inclusion of RO in the concentrate supplement increased the mean levels of trans-octadecanoic, monounsaturated, CLA and polyunsaturated fatty acid in the milk fat from 1.6, 25.7, 0.46 and 2.8 to 4.3, 35.3, 1.02 and 3.9 g 100 g−1 total fatty acids, respectively. In contrast, the mean level of saturated fatty acids decreased from 71.4 to 60.7 g  100 g−1 total fatty acids. Changes in milk fatty acid composition due to RO occurred within 7 days, with responses reaching a plateau after 21 days. Furthermore, the CLA concentrations in the milk fat from individual cows ranged between 0.37 and 0.65 and 0.43 and 2.06 g 100 g−1 total fatty acids for the control and RO diet, respectively. CLA enriched milk was used successfully to manufacture of Edam cheese and butter with softer textures but with acceptable organoleptic and storage properties. Processing milk into butter or cheese had no effect on the CLA concentrations indicating that enrichment of dairy products is dependent on the content in raw milk fat.  相似文献   

18.
A protocol for the preparation of miniature washed-curd cheeses under controlled bacteriological conditions was designed and tested for reproducibility. The process was adapted from “Saint-Paulin” technology, and involves inoculation and renneting in autoclaved bottles, and cutting, stirring, curd washing and removal of whey by centrifugation. Pressing was simulated by low-speed centrifugation. All operations were performed using sterile techniques and autoclaved equipment. Forty miniature cheeses (approximately 40 g) were produced over 10 working days, and ripened for 28 days. Gross composition (dry matter, salt-in-moisture and pH) of the one-day-old cheeses did not differ significantly between cheesemaking days, and average values were 45.16 , 2.46 and 5.15%, respectively. Adventitious Lactobacillus population remained less than 200 CFU g−1 all during ripening, and phages were absent. Nitrogen soluble at pH 4.4 and in phosphotungstic acid attained 21 and 3% of total nitrogen, respectively, in 28-day-old cheeses. The proposed model was shown to be suitable for the preparation of miniature cheese specimens for use in microbiological studies of cheese manufacture and ripening.  相似文献   

19.
A semi-hard cheese produced from milk artificially contaminated with Clostridium tyrobutyricum spores (2.5×103 mL−1) was used as a model for studying the ability of bacteriocin-producing Lactobacillus gasseri K7 (Rifr) to inhibit clostridia. The added lactobacilli did not inhibit the primary starter culture (Streptococcus thermophilus), but inhibited non-starter mesophilic lactobacilli. Late blowing as a result of Cl. tyrobutyricum outgrowth and butyric acid fermentation occurred in all cheeses however it was reduced in cheeses with added Lb. gasseri. After 6 weeks, the average amount of butyric acid was significantly higher in cheeses without added lactobacilli (1.43 vs. 0.70 g kg−1). At the end of 8-weeks ripening, 2.8×107 cfu g−1 of K7 (Rifr) viable cells were detected. Using the total DNA from cheeses with added K7 (Rifr) strain, PCR products were amplified with primers specific for Lactobacillus, Lb. gasseri and K7 bacteriocin gene.  相似文献   

20.
A preparation of exogenous alkaline phosphatase (ALP), containing 17,500 mU L−1, was added to pasteurized milk (PM) to study its role in cheese ripening. Three miniature Cheddar-type cheeses were made from PM containing no added ALP (control), PM plus 23 μL ALP (T1), to give ALP concentration similar to that in raw milk, and PM plus 46 μL ALP (T2). Milk, after addition of ALP, was held at 6 °C for 12 h before cheese manufacture and the experiment was replicated three times. The control, T1 and T2 milks contained ALP activity of 415, 2391 and 4705 mU L−1, respectively. The addition of ALP to PM caused significant (P<0.05) changes in moisture content of miniature cheeses but did not cause any changes in protein content. Levels of water-soluble N during ripening of the cheeses were similar for control, T1 and T2 cheeses. The concentration of amino acids was not affected by the level of ALP present in milk. However, reversed-phase HPLC showed differences in the peptide patterns of control, T1 and T2 cheeses, suggesting a role of ALP in cheese ripening. The results suggest that ALP may play a role in cheese ripening, but further studies are needed to confirm this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号