首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The influence of heat and enzymatic treatments on the hypotensive activity of hydrolysates derived from whey protein isolate was examined. The whey protein isolate (WPI) was previously denatured at 65 or 95 °C and hydrolyzed using the enzymes Alcalase, α-chymotrypsin or Proteomix. The hydrolysates thus obtained were characterized and studied with regard to their angiotensin converting enzyme (ACE) inhibitory activity and hypotensive activity in spontaneously hypertensive rats (SHR). The enzyme α-chymotrypsin was found to produce hydrolysates with the highest ACE inhibitory activity. The hydrolysate that most effectively reduced blood pressure in SHR was obtained from WPI previously denatured at 65 °C and treated with the enzyme Alcalase. The hydrolysate with the highest ACE inhibitory activity was able to reduce the arterial blood pressure of the animals only after intraperitoneal administration, suggesting an interference of gastrointestinal enzymes in the absorption of active peptides from this hydrolysate.  相似文献   

2.
Angiotensin-I-converting enzyme (ACE) has been classically associated with the renin-angiotensin system which regulates peripheral blood pressure. Peptides derived from the major whey proteins, i. e. α-lactalbumin (α-la) and β-lactoglobulin (β-lg) in addition to bovine serum albumin (BSA), inhibit ACE. Some of these inhibitory peptides, i. e. α-lactorphin (α-la f(50–53)), β-lactorphin (β-lg f(102–105)), β-lactotensin (β-lg f(146–149) and albutensin A (BSA f(208–216)), have other bioactivities. The most potent lactokinin reported to date, (β-lg f(142–148)), has an ACE IC50 of 42.6 μmol/l. While they do not have the inhibitory potency of synthetic drugs commonly used in the treatment of hypertension, these naturally occurring peptides may represent nutraceutical/ functional food ingredients for the prevention/treatment of high blood pressure. Studies with gastric and pancreatic proteinase digests of whey proteins indicate that enzyme specificity rather than extent of hydrolysis dictates the ACE inhibitory potency of whey hydrolysates.  相似文献   

3.
This study describes the characterisation of whey protein hydrolysates obtained from tryptic hydrolysis to assess their application as ingredients with angiotensin-converting-enzyme (ACE) inhibitory action. The levels of α-lactalbumin (α-la) and β-lactoglobulin (β-lg) remaining after hydrolysis were quantified. Peptides were separated by RP-HPLC, and Ala-Leu-Pro-Met-His-Ile-Arg (ALPMHIR), the most potent β-lg-derived ACE-inhibitory peptide was monitored. A correlation curve was established for the production of this peptide as a function of hydrolysis time. Heat-induced gelation of hydrolysates was studied by small-deformation rheology. The gelation times and the strength of the final gels were highly dependent on the degree of hydrolysis. Smaller peptides liberated by hydrolysis contributed to the inability of whey protein hydrolysates to gel.  相似文献   

4.
《International Dairy Journal》2006,16(11):1229-1240
The dairy industry faces new technological challenges in order to exploit and maintain some of the bioactive properties of dairy components throughout processing. This review outlines these issues with respect to the two major whey proteins β-lactoglobulin (β-lg) and α-lactalbumin (α-la). Biological activities of both the intact proteins, and peptides derived from the proteins, are discussed, e.g. inhibition of angiotensin-converting enzyme (ACE), anti-microbial activity, anti-carcinogenic activity, hypocholesterolemic effect, metabolic and physiological effects. The levels necessary to provide beneficial effects and, if available, evidence from clinical trials are reported. Developments in the purification and enrichment of the proteins are discussed, and the technological implications of industrial processing on the bio-activity of the proteins are examined. The supplementation of infant formulas with α-la enriched whey proteins is also discussed in light of its potentially improved bioactive properties.  相似文献   

5.
Nine milk protein substrates were hydrolysed in vitro with five proteases for various times (0, 3, 6, and 24 h), and the angiotensin-converting enzyme (ACE)-inhibitory activity of hydrolysates was assessed. Overall, the casein substrates gave rise to hydrolysates with significantly higher ACE-inhibitory activity than the whey protein (WP) substrates (85% vs. 79%). No significant difference between 3 and 24 h of hydrolysis was found. A reasonable correlation was found between the ACE inhibition of the 6 h hydrolysates determined in vitro and estimated by in silico modelling. The highest ACE-inhibitory activity was found in hydrolysates made with thermolysin followed by proteinase K, trypsin, pepsin and Bacillus licheniformis protease. The IC50 values for thermolysin hydrolysates of caseins and WPs were 45–83 and 90–400 μg mL−1, respectively, with α-lactalbumin giving the highest inhibitory activity. Thermolysin, proteinase K and trypsin were useful for the release of highly potent ACE-inhibitory peptides from both WPs and caseins.  相似文献   

6.
Protein hydrolysates obtained by treatment with papain, trypsin, chymotrypsin and actinase all exhibited inhibitory activity (IC50: 3.4–41.8 mg%) toward angiotensin‐converting enzyme (ACE) (EC 3.4.15.1). In particular, the protein hydrolysate obtained by treatment with papain showed the highest inhibitory activity (3.7–5.3 mg%). The ACE inhibitory activity of the gluten hydrolysate obtained with actinase was mainly due to peptides of less than 500 Da in molecular mass. On the other hand, the ACE inhibitory activity of the myofibrillar protein hydrolysate obtained with papain was due to peptides of both less and more than 500 Da in molecular mass. The blood pressure of spontaneously hypertensive rats (SHR) administered the myofibrillar protein hydrolysate was significantly reduced at 2 h after administration. The blood pressure of SHR was also reduced at 2 h after administration of the gluten hydrolysate, and this effect continued until 6 h. These hydrolysates may potentially be useful as antihypertensive food materials.  相似文献   

7.
Removal of salts from protein hydrolysate mixture on large scale is very difficult and relatively inefficient. Selecting practical proteinase system and hydrolysis conditions for the production of whey protein isolate (WPI) enzymatic hydrolysates with high angiotensin I‐converting enzyme (ACE) inhibitory activity and low ash content is very useful. The effect of alcalase, neutrase, trypsin and their combined system, i.e. alcalase‐neutrase and trypsin‐neutrase, under two different hydrolysis conditions, i.e. pH‐controlled and pH‐spontaneous drop, on the formation of ACE‐inhibitory peptides and the characteristics of WPI hydrolysate was investigated. Results showed that the ACE‐inhibitory activity of WPI hydrolysate obtained with alcalase was significantly higher than that of its trypsin or neutrase hydrolysate obtained at the same hydrolysis time by both pH‐controlled and pH‐spontaneous drop method (P < 0.05). The WPI hydrolysate obtained after 3 h incubation with alcalase plus 2 h with neutrase under pH‐spontaneous drop condition possessed the highest ACE‐inhibitory activity of 54.30% and the lowest ash content of 2.95%. This is practical as a functional ingredient in the food industry because of its high ACE‐inhibitory capability, commercial availability in large supply of alcalase and neutrase and no needing for additional desalting process.  相似文献   

8.
宋亮  沈慧星  肖杨  罗永康 《食品科技》2007,32(10):133-137
采用酸性蛋白酶、中性蛋白酶、碱性蛋白酶、木瓜蛋白酶、胃蛋白酶和胰蛋白酶水解珍珠河蚌肉,通过体外检测方法测定其ACE抑制率。结果表明,胃蛋白酶水解产物的ACE抑制率最大。采用四因素二次通用旋转设计对胃蛋白酶水解河蚌肉的水解条件进行优化,研究了酶与底物的质量比(E∶S)、温度、pH值和时间对水解产物ACE抑制率的影响,建立了回归方程,分析了各因素对ACE抑制率的影响,确定了最优的水解条件。  相似文献   

9.
This study examined the effects of enzymes on the production and antigenicity of native and heated whey protein concentrate (WPC) hydrolysates. Native and heated (10 min at 100°C) WPC (2% protein solution) were incubated at 50°C for 30, 60, 90, and 120 min with 0.1, 0.5, and 1% pepsin and then with 0.1, 0.5, and 1% trypsin on a protein-equivalent basis. A greater degree of hydrolysis was achieved and greater nonprotein nitrogen concentrations were obtained in heated WPC than in native WPC at all incubation times. Hydrolysis of WPC was increased with an increasing level of enzymes and higher incubation times. The highest hydrolysis (25.23%) was observed in heated WPC incubated with 1% pepsin and then with 1% trypsin for 120 min. High molecular weight bands, such as BSA, were completely eliminated from sodium dodecyl sulfate-PAGE of both native and heated WPC hydrolysates produced with pepsin for the 30-min incubation. The α-lactalbumin in native WPC was slightly degraded when incubated with 0.1% pepsin and then with 0.1% trypsin; however, it was almost completely hydrolyzed within 60 min of incubation with 0.5% pepsin and then with 0.5% trypsin. Incubation of native WPC with 1% pepsin and then with 1% trypsin for 30 min completely removed the BSA and α-lactalbumin. The β-lactoglobulin in native WPC was not affected by the pepsin and trypsin treatments. The β-lactoglobulin in heated WPC was partially hydrolyzed by the 0.1 and 0.5% pepsin and trypsin treatments and was completely degraded by the 1% pepsin and trypsin treatment. Antigenicity reversibly mimicked the hydrolysis of WPC and the removal of β-lactoglobulin from hydrolysates. Antigenicity in heated and native WPC was reduced with an increasing level of enzymes. A low antigenic response was observed in heated WPC compared with native WPC. The lowest antigenicity was observed when heated WPC was incubated with 1% pepsin and then with 1% trypsin. These results suggested that incubation of heated WPC with 1% pepsin and then with 1% trypsin was the most effective for producing low-antigenic hydrolysates by WPC hydrolysis and obtaining low molecular weight small peptides. Further research is warranted to identify the low molecular weight small peptides in the WPC hydrolysates produced by pepsin and trypsin, which may enhance the use of whey.  相似文献   

10.
Peptide composition and peptide aggregation in β-lactoglobulin (β-LG) hydrolysate were studied as related to residual chymotryptic activity in a commercial trypsin (CT) preparation. Residual chymotryptic activity produced smaller and more hydrophobic peptides in tryptic hydrolysate of β-LG, which enhanced peptide aggregation, mainly at acidic pH. The contribution of the chymotryptic peptide β-LG 15–20 to this aggregation process appeared to be very important, but other peptides (i.e., β-LG 41/43−60, 1–8 and 61−69/70+149−162) and residual α-LA may also decrease peptide solubility. When using CT mixtures in the preparation of whey protein hydrolysates, the impact of residual chymotryptic activity should not be neglected because of its influence on peptide–peptide interactions and on the resulting solubility of the hydrolyzed product.  相似文献   

11.
The aim of this study was to identify whey-derived peptides with angiotensin I-converting enzyme (ACE) inhibitory activity. The bovine whey proteins alpha-lactalbumin and beta-lactoglobulin were hydrolysed with pepsin, trypsin, chymotrypsin, pancreatin, elastase or carboxypeptidase alone and in combination. The total hydrolysates were fractionated in a two step ultrafiltration process, first with a 30 kDa membrane and then with a 1 kDa membrane. Inhibition of ACE was analysed spectrophotometrically. The peptides were isolated by chromatography and identified by mass and sequencing analysis. The most potent inhibitory peptides were synthesized by the 9-fluorenylmethoxycarbonyl solid phase method. Inhibition of ACE was observed after hydrolysis with trypsin alone, and with an enzyme combination containing pepsin, trypsin and chymotrypsin. Whey protein digests gave a 50% inhibition (IC50) of ACE activity at concentration ranges within 345-1733 micrograms/ml. The IC50 values for the 1-30 kDa fractions ranged from 485 to 1134 micrograms/ml and for the < 1 kDa fraction from 109 to 837 mg/ml. Several ACE-inhibitory peptides were isolated from the hydrolysates by reversed-phase chromatography, and the potencies of the purified peptide fractions had IC50 values of 77-1062 microM. The ACE-inhibitory peptides identified were alpha-lactalbumin fractions (50-52), (99-108) and (104-108) and beta-lactoglobulin fractions (22-25), (32-40), (81-83), (94-100), (106-111) and (142-146).  相似文献   

12.
乳清蛋白酶解制备ACE抑制肽的研究   总被引:5,自引:1,他引:5  
采用碱性蛋白酶、中性蛋白酶、胃蛋白酶、胰蛋白酶和木瓜蛋白酶水解乳清蛋白制备ACE抑制肽,通过体外检测法测定其ACE抑制率。结果表明,碱性蛋白酶水解物的ACE抑制率最大。采用三因素二次通用旋转设计对碱性蛋白酶水解乳清蛋白的水解条件进行优化。研究了底物浓度、温度和酶与底物的质量比对ACE抑制率的影响,建立了回归方程,分析了各因素对ACE抑制率的影响.确定了最优的水解条件。  相似文献   

13.
Angiotensin I-converting enzyme (ACE) inhibitory peptide was isolated from Styela plicata. The S. plicata was hydrolyzed with various proteases including Protamex, Kojizyme, Neutrase, Flavourzyme, Alcalase, trypsin, α-chymotrypsin, pepsin, and papain. The hydrolysate prepared with Protamex had the highest ACE inhibitory activity compared to the other hydrolysates. We attempted to isolate ACE inhibitory peptides from hydrolysate prepared with Protamex using ultra-filtration, gel filtration on a Sephadex G-25 column and reversed-phase high-performance liquid chromatography (RP-HPLC) on an ODS column. IC50 value of the purified ACE inhibitory peptide was 24.7 μM, and Lineweaver–Burk plots suggest that the purified peptide from S. plicata acts as mixed-type inhibitor against ACE. Amino acid sequence of the purified peptide was identified as Met-Leu-Leu-Cys-Ser, with a molecular weight 566.4 Da. The results of this study suggest that peptides derived from S. plicata may be beneficial as anti-hypertension compounds in functional foods resource.  相似文献   

14.
The hydrolysis of crude egg white with pepsin, trypsin, and chymotrypsin produced peptides with angiotensin-converting enzyme (ACE) inhibitory properties. These peptides were mainly derived from the proteolysis of ovalbumin. The most active hydrolysates were obtained after treatment with pepsin (50% inhibitory concentration [IC50], 55.3 microg/ml), with the fraction having a molecular mass lower than 3,000 Da giving the highest ACE inhibitory activity (IC50, 34.5 microg/ml). Nine subfractions were collected from the fraction with a molecular mass lower than 3,000 Da using semipreparative reversed-phase high-performance liquid chromatography. Considerable ACE inhibitory activity (IC50 < 40 microg/ml) was found in three of them. These subfractions were analyzed by reversed-phase high-performance liquid chromatography-tandem mass spectrometry, and 14 peptides were identified. These sequences were synthesized, and their ACE inhibitory activities were measured. Among the identified peptides, two novel sequences with potent ACE inhibitory activity were found. The amino acid sequences of these inhibitors were identified as Arg-Ala-Asp-His-Pro-Phe-Leu and Tyr-Ala-Glu-Glu-Arg-Tyr-Pro-Ile-Leu and showed IC50 values of 6.2 and 4.7 microM, respectively.  相似文献   

15.
《Food chemistry》1998,63(4):505-512
The effects of high temperature short time (HTST) treatment compared with other conventional processes on protein, phytic acid, condensed tannins, polyphenols, trypsin, chymotrypsin and α-amylase inhibitor activities and haemagglutinating activities in Renata, Solara and Ballet pea seeds were investigated. Ballet cultivar showed highest protein, phytic acid, tannin, polyphenol contents and trypsin and chymotrypsin inhibitory activities. All pea cultivars contained trypsin- and chymotrypsin-inhibiting activity and lectins but only Solara had α-amylase inhibitory activity. Under extrusion conditions (148°C, 25% moisture and 100 rpm) this thermal processing method was the most effective in condensed tannin, trypsin, chymotrypsin, α-amylase inhibitors and haemagglutinating activity reduction, without modifying protein content as occurs by dehulling, soaking and germination treatments. Trypsin and chymotrypsin inhibitors and haemagglutinating activities in peas were more readily abolished by extrusion treatment than was chymotrypsin inhibitory activity.  相似文献   

16.
Acetes chinensis is a marine shrimp found in the coastal waters of China. The shrimp was hydrolysed by pepsin to prepare hydrolysates with angiotensin I‐converting enzyme (ACE) inhibitory activity. The hydrolysate with the highest ACE inhibitory activity resulted from a 3–5 h incubation at 45 °C and pH 2.5 with pepsin. Gel filtration and RP‐HPLC were used to separate ACE inhibitory peptides from the hydrolysate. The gel filtration fraction of the hydrolysate with a molecular weight range from 1320 Da to 311 Da exerted the highest ACE inhibition activity. This fraction was separated by RP‐HPLC into fifteen fractions, of which fraction F9 showed 92.7% of the ACE inhibition activity. Its peptide sequence was determined to be Leu–His–Pro. It showed a potent antihypertensive activity in spontaneously hypertensive rats. The results suggested that this peptide may be a potent ACE inhibitor which might be developed into a healthy food to lower blood pressure.  相似文献   

17.
分步酶解酪蛋白制备小分子ACE抑制肽   总被引:1,自引:0,他引:1  
王桂春  吕兵 《食品科学》2011,32(21):152-155
通过模拟胃肠道消化,采用单酶和复合酶分步水解酪蛋白获得小分子的血管紧张素转化酶(angiotensin-converting enzyme,ACE)抑制肽。首先通过胃蛋白酶水解条件的优化获得具有高ACE抑制活性肽。然后以此为底物通过胰蛋白酶和胰凝乳蛋白复合酶水解条件优化获得具有高ACE抑制活性的小分子肽。结果表明:第一步的胃蛋白酶水解最优条件为:[E]/[S]=6%、[S]=0.015g/mL、pH=1.8、t=37℃、t=2h,水解产物稀释10倍后ACE抑制率为84.5%,分子质量集中在2000D以下;第二步的复合酶水解最优条件为:m胰蛋白酶(6%):m胰凝乳蛋白酶(3%)=2:1、pH=7.8、t=48℃、t=5h,水解产物稀释10倍后ACE抑制率为85.9%,分子质量集中在500D以下。研究表明,通过分步酶解选择合适的酶解条件可以获具有较高ACE抑制活性的小分子肽。  相似文献   

18.
Heat pre-treated and non heat pre-treated whey protein isolate (WPI) were hydrolysed using α-chymotrypsin (chymotrypsin), pepsin and trypsin. The in vitro antioxidant activity, ACE-inhibition activity and surface hydrophobicities of the hydrolysates were measured in order to determine if peptides with dual functionalities were present. Dual functional peptides have both biological (e.g. antioxidant, ACE-inhibition, opioid activities) and technological (e.g. nanoemulsification abilities) functions in food systems. Heat pre-treatment marginally enhanced the hydrolysis of WPI by pepsin and trypsin but had no effect on WPI hydrolysis with chymotrypsin. With the exception of the hydrolysis by trypsin, heat pre-treatment did not affect the peptide profile of the hydrolysates as analysed using size exclusion chromatography, or the antioxidant activity (P > 0.05). Heat pre-treatment significantly affected the ACE-inhibition activities and the surface hydrophobicities of the hydrolysates (P < 0.05), which was a function of the specificity of the hydrolysing enzyme. Extended hydrolysis (up to 24 h) had no significant effect on the DH and the molecular weight profiles (P > 0.05) but in some instances caused a reduction in the antioxidant activity of WPI hydrolysates. The chymotrypsin hydrolysate showed a broad MW size range, and was followed by pepsin and then trypsin. The bioactivities of the hydrolysates generally decreased in the order; chymotrypsin > trypsin > pepsin. This study showed that by manipulating protein conformation with pre-hydrolysis heat treatment, combined with careful enzyme selection, peptides with dual functionalities can be produced from WPI for use as functional ingredients in the manufacture of functional foods.  相似文献   

19.
为了提高皱纹盘鲍(Haliotis discus hannai)裙边的利用率,以其为原料纯化胶原蛋白,并通过胰蛋白酶和胃蛋白酶共酶解制备血管紧张素转换酶(angiotensin I-converting enzyme,ACE)抑制肽。酶解液经超滤、SuperdexTM peptide10/300GL凝胶柱和高效液相色谱分离纯化,获得了3条来源于皱纹盘鲍胶原蛋白的肽段SGEVGQ、QRGPAGAQGPQ和GPPGPAGAR。其中结合能力最强的肽为GPPGPAGAR,对ACE的IC50值为177.1μmol/L,分子对接结果显示其主要作用于ACE的S1活性口袋,抑制模式与赖诺普利类似,并且经模拟胃肠液消化后仍能发挥较强的ACE抑制作用。本研究通过酶解皱纹盘鲍裙边胶原蛋白制备ACE抑制肽,为鲍鱼裙边的精深加工和ACE抑制肽的开发提供了参考。  相似文献   

20.
The effect of high-pressure (HP) treatment on the hydrolysis of dairy whey proteins by trypsin, chymotrypsin and pepsin was analysed. Isostatic pressure (100–300 MPa for 15 min at 37 °C) was applied to the protein substrate prior to its enzymatic hydrolysis. Digestion was also conducted at atmospheric pressure (0.1 MPa) and under high pressure. The extent of hydrolysis was measured by the o-phthaldialdehyde method, the peptide profile was analysed by reverse-phase high performance liquid chromatography (RP-HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and the residual immunochemical reactivity was assessed by an ELISA test using a pool of seven sera from children allergic to bovine milk, an individual serum also positive (positive control) and two sera from non-allergic children (negative controls). The high pressure increased the degree of hydrolysis by the three enzymes used. Chymotrypsin and trypsin showed the highest proteolysis at 100 and 200 MPa followed by pepsin at 300 MPa. The β-lactoglobulin was hydrolysed by trypsin and chymotrypsin at atmospheric and at high pressures, whereas the pepsin only hydrolysed this protein under high pressure. Pepsin and trypsin hydrolysed α-lactalbumin in all cases. In contrast, this protein was not digested by chymotrypsin, irrespective of the pressure applied. An important decrease of immunochemical reactivity was found for pepsin and trypsin hydrolysates obtained under high pressure. The pool of seven sera detected immunoreactivity in the products of chymotrypsin hydrolysis under high pressure, which was not detected when the serum of one patient was used. The results suggest that dairy whey hydrolysates obtained by pepsin and trypsin in combination with HP treatment could be used as a source of peptides in hypo-allergenic infant formulae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号