首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jang Woo Park  Seung Yong Cho 《LWT》2008,41(4):692-700
Gelatin-based edible films were produced by extruding hot melt of gelatin-based resins through a die with slot orifice and followed by heat-pressed method. The resins were plasticized with glycerol, sorbitol and the mixture of glycerol and sorbitol (MGS). The effect of type of plasticizer on extruded and heat-pressed (EHP) film-forming capacity was studied, and the mechanical and water barrier properties of resulting EHP gelatin films were compared with those of gelatin films prepared by solution casting method. Stretchable films were formed when glycerol or MGS were used as plasticizer, whereas resins plasticized with sorbitol were extruded in non-stretchable sheets. Glycerol plasticized gelatin film showed the highest flexibility and transparency among the EHP films tested. Tensile strength (TS), elongation (E) and water vapor permeability (WVP) of glycerol plasticized EHP gelatin films were 17.3 MPa, 215.9% and 2.46 ng m/m2 s Pa, respectively, and EHP gelatin films had higher E values, lower TS values and higher WVP values compared to the glycerol plasticized cast gelatin films.  相似文献   

2.
Sílvia Maria Martelli 《LWT》2006,39(3):292-301
Biodegradable films from many protein sources have in recent decades attracted a lot of attention for their potential use in food protection because they have several advantages over synthetic films, including those related to the environment. The effects of type and concentration of plasticizers on microstructure, sorption isotherms and water vapor permeability (WVP) of films obtained from chicken feather keratin (CFK) were investigated. Keratins were extracted with an aqueous solutions of urea, 2-mercaptoethanol and surfactant. The protein was dosed and the maximum concentration achieved was 12 g/100 ml. The protein concentration in the keratin film solution was standardized at 7 g/100 ml for the preparation of the films by casting. The results showed that increasing the plasticizer concentration caused a decrease in barrier properties and favored water adsorption by the polymeric network, increasing the moisture content of the films. The monolayer moisture content was 8.76 times higher for films made with glycerol than films made without plasticizer and 12 times higher than films plasticized with PEG 4000. The same behavior was observed for the water solubility coefficient, which increased with increasing plasticizer concentration.  相似文献   

3.
Edible films are thin materials based on a biopolymer. The objectives of this work were to determine the water vapor permeability and the mechanical and thermal properties of edible films based on bovine hide and pigskin gelatins. These films were prepared with 1 g of gelatin/100 ml of water; 15–65 g sorbitol/100 g gelatin; and at natural pH. The samples were conditioned at 58% relative humidity and 22°C for 4 days before testing. The mechanical properties were determined by the puncture test and the water vapor permeability by gravimetric method at 22°C. For DSC analysis, samples were conditioned over silica gel for 3 weeks. Samples (10 mg) were heated at 5°C/min, between −150 and 150°C in a DSC TA 2010. A second scan was run after cell cooling with liquid nitrogen. As expected, the puncture force decreased and the puncture deformation and water vapor permeability increased with the sorbitol content. The origin of gelatin was important only above 25 g sorbitol/100 g gelatin. The DSC traces obtained in the first scan of samples with 15–35 g sorbitol/100 g gelatin, showed a well visible glass transition followed by a sol–gel transition. However, with the increase of sorbitol concentration, the glass transition became broader, typical of the system presenting a phase separation. The model of Couchman and Karazs for ternary system, was used to predict the Tg values as a function of sorbitol concentration.  相似文献   

4.
This study aimed to determine to what extent the water-vapor barrier of whey protein isolate (WPI) films could be improved by adding a lipid and make laminate and emulsion films. The laminate whey protein–lipid film decreased the water vapor permeability (WVP) 70 times compared with the WPI film. The WVP of the emulsion films was half the value of the WPI film and was not affected by changes in lipid concentration, whereas an increased homogenization led to a slight reduction in WVP. The mechanical properties showed that the lipid functioned as an apparent plasticizer by enhancing the fracture properties of the emulsion films. This effect increased with homogenization. The maximum strain at break was 117% compared with 50% for the less-homogenized emulsion films and 20% for the pure WPI films. Phase-separated emulsion films were produced with a concentration gradient of fat through the films, but pure bilayer films were not formed.  相似文献   

5.
Different kinds of plasticizers were chosen to study the effects of plasticizer composition, size and shape on the mechanical properties and water vapor permeability (WVP) of gelatin films in this paper. Firstly, oligosaccharides – sucrose, and some organic acids such as oleic acid, citric acid, tartaric acid, malic acid (MA) were added to gelatin. It was found that only MA could improve the ductility of gelatin film, and the visual appearance of MA modified gelatin film was better. Secondly, polyethylene glycols (PEG) with different molecular weights (300, 400, 600, 800, 1500, 4000, 10?000, 20?000) were used to plasticize gelatin films. This showed that PEG of lower molecular weights exhibited better plasticizing effect for gelatin films, and such films had better visual properties. This shows that mannitol (Man) and sorbitol (Sor) could make gelatin films flexible, whereas Man could crystallize from gelatin film. Following this, the plasticization of ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG) series and ethanolamine (EA), diethanolamine (DEA), triethanolamine (TEA) series was studied. At last, suitable plasticizers (MA, PEG300, sorbitol, EG, DEG, TEG, EA, DEA, TEA) for gelatin were selected to investigate the WVP and water content of these plasticized gelatin films. The mechanical properties of these films were also compared.  相似文献   

6.
BACKGROUND: A hot‐buffer‐soluble‐solid fraction (HBSS) and an alkaline‐soluble‐solid fraction (ASS) of okra polysaccharides (OKP) were obtained using sequential extraction. These fractions were combined with whey protein isolate (WPI) and glycerol (Gly) plasticizer to form blend edible films. Effects of OKP fraction and content on tensile properties, water vapor permeability (WVP) and oxygen permeability (OP) were determined. RESULTS: HBSS film had significantly higher percent elongation (%E) and lower elastic modulus (EM), WVP and OP than ASS film. Increasing HBSS or ASS content in blend films with WPI significantly reduced film tensile strength and EM and increased film %E and WVP. OP values for WPI–HBSS blend films were significantly lower than OP for WPI or HBSS film. WPI–HBSS and WPI–ASS blend films had lower WVP and OP than WPI films with equivalent tensile properties. CONCLUSIONS: WPI–HBSS blend films have higher WVP and lower OP than WPI film or HBSS film, indicating unique interactions between WPI and HBSS. Compared to WPI film, WPI–HBSS blend films have improved flexibility, stretchability and oxygen barrier. Different HBSS and ASS compositions and structures are responsible for property differences between HBSS and ASS films and between WPI–HBSS and WPI–ASS blend films. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
皮革透水汽性能的研究   总被引:5,自引:2,他引:5  
从透水汽性能方面研究了未涂饰皮革、聚氨酯涂饰皮革、贴膜皮革和合成革的物质传递性能。研究结果表明 :涂饰对皮革的透水汽性能影响很大 ,未涂饰皮革的透水汽性能远远优于涂饰皮革、贴膜皮革和合成革。还分析了皮革的透水汽机理。未经过涂饰的皮革的透水汽作用是水分子在蒸汽压力作用下 ,在皮革微孔内的迁移和胶原上亲水性基团运动对水分子的传递的加合。而涂饰后的皮革、贴膜皮革和合成革的透水汽作用则只是水分子在蒸汽压力作用下在皮革微孔内迁移的结果。要提高成品皮革的透水汽性能 ,应该从如何提高皮革的孔隙率和皮革及涂饰剂的亲水性基团数目方面进行研究  相似文献   

8.
织物透湿性测试新方法   总被引:1,自引:0,他引:1       下载免费PDF全文
黄建华 《纺织学报》2007,28(10):30-33
新型织物透湿性测试装置用防水透湿PTFE薄膜包覆透湿圆柱筒的底部,形成饱和水蒸气,使用干燥氮气流作为载体,将透过织物的水蒸气带走,通过测量出口氮气流的相对湿度来确定织物的透湿量。实验结果表明,这种测试方法能在5 min内准确地评价织物透湿性,试样透湿量的变异系数小于1%。该方法具有测试时间短,重复性好,灵敏度高和成本低的特点,可用于纺织生产厂家对产品透湿性的日常质量控制。  相似文献   

9.
Jong-Whan Rhim  Seok-In Hong 《LWT》2009,42(2):612-172
PLA-based composite films with different types of nanoclays, such as Cloisite Na+, Cloisite 30B and Cloisite 20A, were prepared using a solvent casting method and their tensile, water vapor barrier and antimicrobial properties were tested. Tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) of control PLA film were 50.45 ± 0.75 MPa, 3.0 ± 0.1%, and 1.8 × 10−11 g m/m2 s Pa, respectively. TS and E of nanocomposite films prepared with 5 g of clay/100 g of PLA decreased 10-20% and 11-17%, respectively, depending on the clays used. On the contrary, WVP of the nanocomposite films decreased 6-33% through nanoclay compounding. Among the clay types used, Cloisite 20A was the most effective in improving the water vapor barrier property while sacrificing tensile properties the least. The effect of clay concentration tested using Cloisite 20A showed a significant decrease in TS and WVP, with increases in clay content. Among the PLA/clay composite films tested, only PLA/Cloisite 30B composite film showed a bacteriostatic function against Listeria monocytogenes.  相似文献   

10.
Starch-based films have promising application on food packaging, because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with cellulose fibers. Besides, the influences of both the solubility coefficient of water in the films (β) and the diffusion coefficient of water vapor through the films (Dw) on the films' water vapor permeability (Kw) were investigated. Films were prepared by the so-called casting technique, from film-forming suspensions of cassava starch, cellulose fibers (1.2 mm long and 0.1 mm of diameter), glycerol and water. The influence of fibers addition on Kw was determined at three relative humidity gradient ranges, ΔRH (2–33%, 33–64% and 64–90%). Films reinforced with cellulose fibers showed higher tensile strength and lower deformation capacity, and presented lower Kw than films without fibers. Kw showed strong dependency of β and Dw, presenting values up to 2–3 times greater at ΔRH = 64–90% than at ΔRH = 33–64%, depending on the film formulation. Therefore, adding cellulose fibers to starch-based films is a viable alternative to improve their mechanical and water barrier properties. Besides, this work showed the importance of determining film's water vapor permeability simulating the real environmental conditions the film will be used.  相似文献   

11.
Seung Yong Cho 《LWT》2004,37(8):833-839
Soy protein isolates (SPI) were fractionated by ultrafiltration unit equipped with 100 and 300 kDa cutoff size membranes. Glycerol-plasticized fractionated soy protein films were developed by casting methods. Mechanical, moisture barrier and physical properties of films, as affected by molecular weight of soy protein fraction, were investigated. Tensile strength and percent elongation at break of films increased with molecular weight of soy proteins. However, molecular weight variation did not influence the water vapor barrier properties of films. Protein solubilities of fractionated films were in the range of 3.5-4.6 g/100 g of dry film, whereas 11.9 g of proteins were solubilized from 100 g of dry SPI film. Hunter b value of fractionated protein films decreased with molecular weight of soy protein.  相似文献   

12.
织物透湿性测试方法的比较   总被引:2,自引:0,他引:2       下载免费PDF全文
测量织物透湿性的方法有多种,它们在测量原理、测试条件和测量参数方面不一样。为比较各方法的特点,采用5种测试方法用于评价6种不同织物的透湿性能。试验结果表明,采用干燥剂倒杯法测得的透湿量最高,其次分别为新测试方法、倒杯法、正杯法。另外,新测试方法和出汗防护热板仪、倒杯法及干燥剂倒杯法有很好的相关性,由于该方法具有测试时间短、重复性好、灵敏度高、所需试样小的特点,可用于对织物透湿性的日常质量控制。  相似文献   

13.
透湿性是衡量纺织服装舒适性的重要因素,为了更好地研究透湿性不同标准的测量方法,分析研究了透湿性原理,根据原理总结出透湿性的主要影响因素,归纳了称重法和传感器法的透湿性测试方法,比对和研究了不同国家对透湿性测试的方法标准。  相似文献   

14.
采用扫描电子显微镜观察了医用防护服织物的结构,分析了不同复合结构的特征,分别用吸湿法和蒸发法测试了医用防护服织物的透湿量,以及模拟穿着多层织物的状态时医用防护服织物的透湿量。结果表明,聚四氟乙烯(PTFE)膜层压织物透湿量高,聚氨酯(PU)涂层织物及热塑性聚氨酯(TPU)涂层非织造布透湿量低,且有明显的涂层缺陷,有剥落现象。试样蒸发法透湿量普遍较吸湿法透湿量小,且试样间透湿量差异小。随层数的增加,多层织物组合试样透湿性有所下降。  相似文献   

15.
Sugars are natural plasticizers for food biopolymers and zein is the most important protein of corn. In this research, sugars (fructose, galactose and glucose) were used as plasticizers and the water vapor permeability (WVP), contact angle and microstructure of the zein films were studied. The pure zein film had high WVP and adding of sugars to 0.7 g/g zein caused to decrease of WVP. Films containing galactose had the lowest WVP.All samples had the lowest contact angle with ethanol and the highest contact angle with water. The zein films containing galactose had the highest water contact angle within the plasticized films. The pure zein films and the films containing fructose had higher critical surface tension of wetting (γc) than the films containing glucose and galactose. Adding sugar plasticizer to zein films increased the surface tension of zein films. In the unplasticized zein films, loose structures with a lot of cavities and voids were observed. The films plasticized by fructose had smooth surface and plasticizer particles distributed throughout of the films.  相似文献   

16.
ABSTRACT:  Cassava starches are widely used in the production of biodegradable films, but their resistance to humidity migration is very low. In this work, commercial cassava starch films were studied and classified according to their physicochemical properties. A nondestructive method for water vapor permeability determination, which combines with infrared spectroscopy and multivariate calibration, is also presented. The following commercial cassava starches were studied: pregelatinized (amidomax 3550), carboxymethylated starch (CMA) of low and high viscosities, and esterified starches. To make the films, 2 different starch concentrations were evaluated, consisting of water suspensions with 3% and 5% starch. The filmogenic solutions were dried and characterized for their thickness, grammage, water vapor permeability, water activity, tensile strength (deformation force), water solubility, and puncture strength (deformation). The minimum thicknesses were 0.5 to 0.6 mm in pregelatinized starch films. The results were treated by means of the following chemometric methods: principal component analysis (PCA) and partial least squares (PLS) regression. PCA analysis on the physicochemical properties of the films showed that the differences in concentration of the dried material (3% and 5% starch) and also in the type of starch modification were mainly related to the following properties: permeability, solubility, and thickness. IR spectra collected in the region of 4000 to 600 cm−1 were used to build a PLS model with good predictive power for water vapor permeability determination, with mean relative errors of 10.0% for cross-validation and 7.8% for the prediction set.  相似文献   

17.
The objectives of this research were to examine the mechanical and water vapor barrier properties of the starch/decolorized hsian-tsao leaf gum (dHG) films as a function of dHG and glycerol concentration. Edible film-forming solutions were prepared by mixing tapioca starch with dHG at different starch/dHG ratios to make a total solid content of 2%. In total, 15–40% glycerol was then added based on the dry film matter. Starch/dHG films were obtained by casting. It was found that the puncture strength, tensile strength, and modulus as well as the inverse of relaxation coefficient of starch/dHG films pronouncedly increased with increasing dHG, accompanied with a decreasing tendency in puncture deformation and tensile strain at break. Such results implied that starch interacted with dHG synergistically, resulting in the formation of a new network to improve the mechanical properties of tapioca starch/dHG films. Mechanical strengths of starch/dHG films decreased and water vapor permeability (WVP) at 75% RH increased with increasing glycerol concentration. However, the plasticizing effect of glycerol became less significant at high dHG concentration, particularly for the puncture deformation and tensile strain at break of the films. Water sorption isotherm results indicated that significant water sorption would only occur at high water activity (about 0.75), and generally became more pronounced with increasing glycerol and dHG concentration, but to a lesser extent for the latter. Dynamic mechanical analysis revealed that the major glass transition of starch/dHG films occurred at about −50 °C.  相似文献   

18.
Moisture sorption kinetics and isotherms of cassava-flour-based baked product were investigated. Empirical models were tested to fit the experimental data. Textural changes of the product were investigated. In addition, activation energies (Ep) for water vapor permeability (WVP) of polyolefin films were determined. Finally, the product was packaged in low-density polyethylene (LDPE) or oriented polypropylene (OPP) pouches, and stored at 30 ± 1 °C and 50 ± 2% RH to simulate actual storage conditions and to determine shelf life. This actual shelf life was compared to the predicted shelf life by using empirical models and Ep for WVP. Moisture sorption kinetics was more rapid during the initial stage, while a lesser amount of moisture was adsorbed as adsorption time increased. The higher the relative humidity used, the more pronounced the effect. The sigmoidal moisture sorption isotherms of this product can be classified as type II. The GAB model was found to be the best-fit model for this product. Once the product hardness or work reached the maximum and began to reduce at moisture content (MC) ≈6%, the product texture began to be detected as becoming slightly soft. This implies that hardness and work at the maximum level could be used to identify the critical MC which causes a loss of crispness to an unacceptable degree. The predicted shelf lives – estimated by employing Ep for WVP of LDPE and OPP, and the GAB model – were close to the actual shelf lives. Therefore, the estimation by empirical models and activation energy was found to be applicable for rapid and accurate shelf life prediction.  相似文献   

19.
E. Bosquez-Molina  S.A. Tomás 《LWT》2010,43(9):1419-1425
Oil-in-water (O/W) emulsions with a dispersed phase mass fraction (φm) of 0.175 were prepared by dispersing a blend of candelilla wax/mineral oil (2:1 ratio) in 10 g of mesquite gum per 100 g of water containing either CaCl2 (0.0, 0.1, 0.2, 0.3, 0.4 or 0.5 g) alone or combined with 1.5 g of glycerol. The mean volumetric droplet size (d3,0), the rate of droplet coalescence (C) and the viscosity-shear rate behavior of the emulsions were affected by the addition of CaCl2 alone or combined with glycerol. The Carreau-Yasuda model fitted best the viscosity-shear rate data of all the emulsions. The surface morphology of the edible films, analyzed by Atomic Force Microscopy (AFM), exhibited a strong dependence on the CaCl2 concentration. Maximum roughness occurred with a CaCl2 concentration of 0.3 g per 100 g. Films with glycerol showed significantly higher roughness than those with only CaCl2. Water vapor permeability (WVP) was significantly lowered as the concentration of CaCl2 increased from 0.1 to 0.3 g per 100 g in the coatings, but increased again at CaCl2 concentrations of 0.4-0.5 g per 100 g. Coatings containing glycerol displayed significant higher WVP.  相似文献   

20.
The mechanical properties, opacity, and water vapor permeability of 5.0 % (w/w) canola protein isolate (CPI) films were investigated in the presence and absence of 1 % (w/w of CPI) genipin, and as a function of plasticizer-type [50 % (w/w of CPI); glycerol, sorbitol, and polyethylene glycol 400]. Findings indicated that tensile strength (TS), puncture strength (PS), and elastic modulus (E) values for CPI films prepared with sorbitol were the highest, followed by PEG-400 and then glycerol, whereas tensile elongation (TE) and puncture deformation (PD) values were greater for films prepared with glycerol, followed by PEG-400 and then sorbitol. In all cases, films prepared with genipin were stronger (greater TS, PS, and E) and less flexible (lower TE and PD) than uncross-linked films. Films also showed greater water vapor permeability when prepared with glycerol, followed by PEG-400 and then sorbitol; however, no differences were observed in the presence and absence of genipin. Opacity was least with glycerol present, followed by sorbitol and PEG-400, and increased in the presence of genipin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号