首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of an experimental study on the effects of using recycled waste expanded polystyrene foam (EPS), as a potential aggregate in lightweight concrete. In this study, thermally modified waste EPS foams have been used as aggregate. Modified waste expanded polystyrene aggregates (MEPS) were obtained by heat treatment method by keeping waste EPS foams in a hot air oven at 130 °C for 15 min. Effects of MEPS aggregate on several properties of concrete were investigated. For this purpose, six series of concrete samples were prepared. MEPS aggregate was used as a replacement of natural aggregate, at the levels of 0%, 25%, 50%, 75%, and 100% by volume. The density of MEPS is much less than that of natural aggregate; MEPS concrete becomes a lightweight concrete with a density of about 900–1700 kg/m3. The 28-d compressive strengths of MEPS concrete range from 12.58 MPa to 23.34 MPa, which satisfies the strength requirement of semi-structural lightweight concrete.  相似文献   

2.
This study introduces a new production method for production of the insulation blocks made of pumice aggregate, lightweight concrete and expanded polystyrene foam (EPS). Products produced via this method were analyzed for compliance with the Turkish standards institution (TS EN) standards. A single-line lightweight masonry block with 200?mm?×?400?mm?×?200?mm dimension (width?×?length?×?height) was produced to produce an insulation block by using circular saw block cutting machine for the first time. Physical and thermal properties of the all-in aggregate pumice used in lightweight aggregate were determined and the all-in aggregate pumice was subjected to sieve analysis. After the production, insulation blocks were subjected to some analysis according to pre-set standards to determine their usability as masonry unit. After the curing period (28?days), it was found that the highest value of deviation from the plane was 0.150?mm; deviation of the flanges from plain parallelism was 0.40?mm; dry density was 562?kg/m3; compressive strength value was 2.99?N/mm2; water absorption coefficient by capillaries was 20.63?g/mm2sn0.5; sound absorption value of the masonry unit was 60 (dB); thermal conductivity coefficient was 0.33?W/mK; initial shear strength value was 0.471?N/mm2 and plaster-holding capacity was considerably high. When compared to other construction elements, thermal conductivity and masonry unit weight of the insulation block and masonry costs were found to be lower.  相似文献   

3.
In this research, the properties of lightweight geopolymer concrete containing aggregate from recycle lightweight block were studied. The recycle block was crushed and classified as fine, medium and coarse aggregates. The compressive strength and density with various liquid alkaline/ash ratios, sodium silicate/NaOH ratios, NaOH concentrations, aggregate/ash ratios and curing temperatures were tested. In addition, porosity, water absorption, and modulus of elasticity were determined. Results showed that the lightweight geopolymer blocks with satisfactory strength and density could be made. The 28-day compressive strength of 1.0–16.0 MPa, density of 860–1400 kg/m3, water absorption of 10–31% and porosity of 12–34%, and modulus of elasticity of 2.9–9.9 GPa were obtained. It can be used as lightweight geopolymer concrete for wall and partition.  相似文献   

4.
梅利芳  徐光黎 《复合材料学报》2016,33(10):2355-2362
为促进轻质土在岩土工程中的广泛应用,添加改性聚丙烯纤维改善其力学性能,通过无侧限抗压强度试验分析探讨了纤维聚苯乙烯泡沫(EPS)颗粒轻质土强度-变形特性、受压破坏模式和无侧限抗压强度的影响因素,并运用SEM从微观层次上分析了其力学机制。结果表明:不同EPS颗粒、纤维及水泥掺量时,纤维EPS颗粒轻质土的应力-应变曲线不同;EPS和水泥掺量是强度的主要影响因素,其次为纤维掺量;强度随EPS掺量的增大而显著降低,随水泥掺量增大而显著提高;未加纤维的EPS颗粒轻质土松散且易破碎,强度骤然丧失;添加纤维能提高轻质土的峰值强度、残余强度、整体性和韧性,改善其脆性破坏模式;但EPS掺量较高(大于干土质量的3%)时,纤维与水泥土粘结有限,EPS颗粒轻质土力学性能改善效果较弱;EPS颗粒为空心蜂巢结构,纤维表面布满针状的水泥水化物并形成空间网状结构。所得结论表明纤维改善了轻质土力学性能。   相似文献   

5.
An experimental study was carried out to examine five mixtures made with selected Brazilian lightweight aggregates in order to produce lightweight aggregate concrete (LWAC) for slim precast components. Flow (initial and after 2 h), air content, compressive strength, tensile strength (flexural and splitting), modulus of elasticity and deformation were studied. The 7-day compressive strength and the dry concrete density varied from 39.7 to 51.9 MPa and from 1460 to 1605 kg/m3, respectively. The results of this pilot study suggest that there are possibilities of producing slim precast components using high-performance lightweight concrete with Brazilian lightweight aggregates.  相似文献   

6.
An experiment was performed to investigate the properties of the hardened paste of fly ash by alkali activation and to determine the possible use of the paste in the production of lightweight aggregates. The highest compressive strength was 33.9 MPa, for paste with 10% NaOH, 15% sodium silicate, and 5% MnO2, cured at room temperature after 24 h of moisture curing at 50 °C. The hardened paste of fly ash was granulated to produce AFLA (alkali-activated fly ash lightweight aggregate). AFLA exhibited specific gravity (SSD, OD), water absorption, unit weight, and solid volume percentages of 1.85 (SSD), 1.66 (OD), 11.8%, 972 kg/m3, and 58.6%, respectively. The results of the heavy metals leaching test met US EPA regulations. The concrete using AFLA exhibited a compressive strength of 26.47 MPa and good freeze–thaw resistance at 6.0% entrained air content.  相似文献   

7.
This paper reports the results of a study conducted to investigate the effect of low volume content of steel fiber on the slump, density, compressive strength under different curing conditions, splitting tensile strength, flexural strength and modulus of elasticity of a grade 35 oil palm shell (OPS) lightweight concrete mixture. The results indicate that an increase in steel fiber decreased the workability and increased the density. All the mechanical properties except the modulus of elasticity (E) improved significantly. The 28 day compressive strength of steel fiber OPS lightweight concrete in continuously moist curing was in the range of 41–45 MPa. The splitting tensile/compressive and the flexural/compressive strength ratio for plain OPS concrete are comparable with artificial lightweight aggregate. The (E) value measured in this study was about 15.5 GPa on average for all mixes, which is higher than previous studies and is in the range of normal weight concrete. Steel fiber can be used as an alternative material to reduce the sensitivity of OPS concrete in poor curing environments.  相似文献   

8.
This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement + mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight aggregate. Several properties of self-compacting pumice aggregate lightweight concretes, such as unit weight, flow diameter, T50 time, flow diameter after an hour, V-funnel time, and L-box tests, 7, 28, 90 and 180-day compressive strength, 28-day splitting tensile strength, dry unit weight, water absorption, thermal conductivity and ultrasonic pulse velocity tests, were conducted. For this purpose, 18 series of concrete samples were prepared in two groups. In the first group, pumice aggregate at 100% replacement of natural aggregate was used in the production of self-compacting lightweight aggregate concrete with constant w/(c + m) ratios as 0.35, 0.40, and 0.45 by weight. Furthermore, as a second group, pumice aggregate was used as a replacement of natural aggregate, at the levels of 0, 20, 40, 60, 80, and 100% by volume. Flow diameters, T50 times, paste volumes, 28-day compressive strengths, dry unit weights, thermal conductivities and ultrasonic pulse velocity of self-compacting lightweight aggregate concrete were obtained over the range of 600–770 mm, 3–9 s, 435–540 l/m 3, 10.6–65.0 MPa, 845–2278 kg/m 3, 0.363–1.694 W/mK and 2617–4770 m/s respectively, which satisfies not only the strength requirement of semi-structural lightweight concrete but also the flowing ability requirements and thermal conductivity requirements of self-compacting lightweight aggregate concrete.  相似文献   

9.
When concrete, one of the most important structural materials, is exposed to elevated temperatures generally strength loss is observed. Decrease ratio in the compressive strength depends on many materials and experimental factors. An artificial neural network (ANN) approach was used to model the compressive strength of lightweight and semi lightweight concretes with pumice aggregate subjected to high temperatures. Model inputs were the target temperature, pumice aggregate ratio and heating duration and the output was the compressive strength of pumice aggregate concrete. Data on the compressive strength of pumice aggregate concrete after the effects of high temperatures was obtained from a previous experimental study. The predicted values of the ANN are in accordance with the experimental data. The results indicate that the model can predict the compressive strength with adequate accuracy.  相似文献   

10.
张虎 《材料导报》2017,31(20):124-128
在自密实轻骨料混凝土基础之上掺入钢纤维配制出自密实钢纤维轻骨料混凝土,分析了自密实钢纤维轻骨料混凝土的抗压强度、抗拉强度等主要力学性能以及收缩、抗碳化等耐久性能,并与普通骨料自密实混凝土进行对比分析。探讨了钢纤维对于改善自密实轻骨料混凝土损伤所起的作用及其机理。结果表明:掺入钢纤维后自密实轻骨料混凝土的抗压强度增大,劈拉强度明显提高,收缩及抗碳化能力也有明显改善。与普通骨料混凝土相比,自密实钢纤维轻骨料混凝土初始裂缝的产生与发展得到有效抑制。  相似文献   

11.
Lightweight aggregates are widely used in renders to obtain low densities and better workability. This type of aggregate requires higher than normal water:cement ratios, especially in renders involving the addition of alkyl celluloses or modified starches. This paper reports the effect of some lightweight materials (expanded perlite, expanded glass, hollow micro-spheres and expanded polystyrene) on density, fluency, sorptivity, water absorption and mechanical strength, all of which play an important role in renders and coatings. The percentages of the lightweight materials are: 0%, 0.58% and 1.74% w/w on the whole composition. The experiments show that mechanical strength, sorptivity and water absorption are affected in different ways, depending on the lightweight material and the dose used. Expanded glass and hollow micro-spheres showed some pozzolanic activity, which was corroborated, by short-term compressive strength tests, in specimens of lime and cement that were tested after seven days. Finally, conductivity tests were carried out using lime suspensions in the presence of such pozzolanic materials.  相似文献   

12.
In this study, the effect of aggregates impregnated with phase change material (paraffin type) on properties of concrete is investigated. The experimental series consists of two stages. The first stage is to investigate the techniques used to impregnate phase changed material (paraffin type) into lightweight aggregates and the properties of aggregates with paraffin inside (PLA). Two impregnation techniques are introduced, (1) heat only and (2) heat and pressure (autoclaving). Using the obtained results, the aggregate with the highest level of impregnation in the shortest time is selected to use in the concrete production process of the next stage. In the second stage, the properties of concrete mixed with non-paraffin and paraffin impregnated lightweight aggregates (PLA) at different proportions are investigated. The experimental series include density and absorption, compressive strength, thermal storage (and insulation) and sound transmission loss. Results in aggregate level show the increase in specific gravity and the decrease in absorption with paraffin inserted into aggregates. In concrete form, the density, compressive strength and sound insulation are found to increase with the PLA replacement ratio. The sound transmission loss, on the other hand, becomes less efficient with increasing PLA replacement ratio.  相似文献   

13.
Concrete produced using a magnesium phosphate binder can exhibit faster strength gain and result in lower overall environmental impacts than concretes produced with Portland cement binders. This paper reports a study to develop and characterize the rheological and mechanical properties of lightweight ceramic concretes (LWCC) that use a magnesium potassium phosphate binder. The aggregate type and the overall mix composition were primary variables in the study. Aggregate types included expanded clay, expanded slate, and expanded shale. Crushed bottom ash aggregate from a local coal-fired thermal generating station was also used. The aggregates of a given material varied by size fraction and by surface characteristics in some cases. The test results showed that increases in the water/binder ratio increased the slump flow but had negligible influence on the setting time. The compressive strength and density of the LWCCs both decreased with increases in the aggregate/binder mass ratio and the water/binder ratio, regardless of the type of lightweight aggregate. The 28 day compressive strength and density ranged from 17 to 36 MPa and 1600 to 1870 kg/m3 respectively. Regardless of the aggregate type, increasing the water/binder ratio also reduced the elastic modulus, modulus of rupture and direct shear strengths. Relationships were developed to directly relate these mechanical properties to the corresponding compressive strengths. The results indicate that LWCCs using a magnesium phosphate binder and lightweight aggregates can be formulated with rheological and mechanical properties suitable for structural applications.  相似文献   

14.
为探究自密实轻骨料混凝土压-剪复合受力力学性能,应用液压伺服机和材料压-剪试验机,对自密实轻骨料混凝土进行单轴受压、单轴劈裂抗拉和压-剪复合受力试验研究,通过试验得到不同加载工况下自密实轻骨料混凝土破坏形态和力-变形曲线,引用文献对普通混凝土和轻骨料混凝土压-剪复合受力研究数据,对比分析自密实轻骨料混凝土压-剪复合受力性能。研究结果表明:自密实轻骨料混凝土压-剪复合受力破坏形态与普通混凝土和轻骨料混凝土相类似,随着轴压比的提高,剪切破坏断面摩擦痕迹逐步明显,混凝土碎渣也逐步提高,自密实轻骨料混凝土剪切破坏强度、残余荷载和剪切破坏位移也随之提高;剪切破坏强度提高幅度高于普通混凝土和轻骨料混凝土,残余荷载受轴压比影响提高幅度高于普通混凝土,但略低于轻骨料混凝土。基于主应力空间结合普通混凝土和轻骨料混凝土压-剪试验数据,提出混凝土压-剪复合受力统一破坏准则,同时基于八面体应力空间,提出自密实轻骨料混凝土破坏准则,所提出的破坏准则具有良好的适用性。   相似文献   

15.
This paper discusses the development of empirical models for workability and compressive strength of cold-bonded fly ash aggregate concrete in terms of mixture proportioning variables such as cement content, water content and volume fraction of cold-bonded aggregate through statistically designed experiments based on Response Surface Methodology. Factor level of cement is taken from 250 to 450 kg/m3 to introduce weak as well as strong matrix phase in the concrete. Apart from water content, workability of concrete is highly influenced by main and interaction effect of volume fraction of cold-bonded aggregate in the composition. Response surface indicate that increase in cement content causes to change the predominant failure mode from mortar failure to aggregate fracture and concrete strength decreases with increase in volume fraction of aggregate at higher cement contents. The models developed have been found useful in arriving typical relationship to establish a mixture proportioning methodology for cold-bonded fly ash aggregate concrete.  相似文献   

16.
For making artificial lightweight aggregate, selected raw materials are fed into a rotary kiln at high temperature. Providing such a high temperature is costly and generally, the process of making artificial lightweight aggregate is not environmentally friendly. The use of natural lightweight aggregate for making lightweight concrete can lead to low-cost construction. The use of a solid waste lightweight aggregate namely oil palm shell (OPS) as coarse aggregate, is not only environmentally friendly but leads to a low-cost material. This study is a comparison between some engineering properties of OPS lightweight concrete and an artificial lightweight (expanded clay) concrete with low water to cement ratio, along with having good workability and without any segregation. The test results show that OPS concrete has better mechanical properties and a higher efficiency factor than expanded clay lightweight concrete. The ceiling strength of expanded clay lightweight concrete occurs at an early age; while it happens in OPS concrete at a later age. The crack pattern of the tested specimens shows that OPS is much stronger than expanded clay. On the other hand, the compressive strength of OPS lightweight concrete is more sensitive to lack of curing. Although OPS lightweight concrete shows twice the amount of drying shrinkage than expanded clay lightweight concrete in the short term, this difference reduces significantly at later ages.  相似文献   

17.
《Materials Letters》2007,61(19-20):4035-4038
This paper presents the experimental study to investigate the applicability of a novel technique to produce lightweight sandwich composite elements. Sandwich composite is fabricated by encasing lightweight aerated concrete as core with high performance ferrocement box as skin layer. The performance of the sandwich elements is investigated in terms of ultimate compressive strength, flexural strength, water absorption, overall unit weight and the failure mode. The results are compared with control specimens made solely of the aerated concrete. Results showed the remarkable enhancement in the compressive strength and flexural strength while the water absorption is reduced to fractions as compared to that of the control specimens. Overall unit weight of the sandwich composite elements falls in the range of the lightweight structural elements. The failure mode of the sandwich elements reveals the ductile and composite behavior thus transforming a pure brittle material (aerated concrete) into ductile composite material because of the ferrocement encasement.  相似文献   

18.
轻骨料混凝土具有轻质、高强及保温隔热性能好等优点,被广泛应用于工程结构中。采用细观数值模拟方法,将普通及轻骨料混凝土看作由骨料颗粒、砂浆基质及界面过渡区组成的三相复合材料,建立了无腹筋混凝土梁剪切破坏行为模拟的三维细观力学分析模型,研究了不同尺寸普通及轻骨料无腹筋混凝土悬臂梁在单调加载下的剪切破坏模式与失效机制,揭示了名义剪切强度的尺寸效应规律。此外,结合模拟结果对相关设计规范抗剪承载力计算公式的准确性和安全性进行了初步探讨。研究结果表明:区别于普通混凝土梁,轻骨料混凝土梁由于骨料强度较低而首先发生破坏;不同尺寸混凝土梁的剪切破坏模式基本一致,梁的名义剪切强度展现出明显的尺寸效应;相比于普通混凝土梁,轻骨料混凝土梁剪切破坏表现出具有更强的尺寸效应。  相似文献   

19.
The aim of this study is to investigate the role of 0–2 mm fine aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate (RCA) concrete with normal and high strengths. Normal coarse and fine aggregates were substituted with the same grading of RCAs in two normal and high strength concrete mixtures. In addition, to keep the same slump value for all mixes, additional water or superplasticizer were used in the RCA concretes. The compressive and splitting tensile strengths were measured at 3, 7 and 28 days. Test results show that coarse and fine RCAs, which were achieved from a parent concrete with 30 MPa compressive strength, have about 11.5 and 3.5 times higher water absorption than normal coarse and fine aggregates, respectively. The density of RCAs was about 20% less than normal aggregates, and, hence, the density of RCA concrete was about 8–13.5% less than normal aggregate concrete. The use of RCA instead of normal aggregates reduced the compressive and splitting tensile strengths in both normal and high strength concrete. The reduction in the splitting tensile strength was more pronounced than for the compressive strength. However, both strengths could be improved by incorporating silica fume and/or normal fine aggregates of 0–2 mm size in the RCA concrete mixture. The positive effect of the contribution of normal sand of 0–2 mm in RCA concrete is more pronounced in the compressive strength of a normal strength concrete and in the splitting tensile strength of high strength concrete. In addition, some equation predictions of the splitting tensile strength from compressive strength are recommended for both normal and RCA concretes.  相似文献   

20.
冲击荷载作用下早强EPS混凝土的力学性能   总被引:3,自引:0,他引:3       下载免费PDF全文
采用&;#61542;100mm分离式霍普金森压杆(split Hopkinson pressure bar,简称SHPB)试验装置,对养护龄期分别为12h、24h和36h的早强聚苯乙烯混凝土(EPS)进行了冲击压缩试验,得到了相应的应力-应变曲线,并与养护龄期为28d的聚苯乙烯混凝土(EPS)的应力-应变曲线进行比较。结果表明:养护龄期为36h、28d的EPS混凝土随着应变率的增加,其冲击压缩强度也相应增加;养护龄期为12h、24h的EPS混凝土随着应变率的增加,其冲击压缩强度变化不明显。另外,还研究了试件动态抗压强度与平均应变率的关系和养护龄期对动态抗压强度的影响,证明了EPS混凝土的抗冲击性能随养护龄期的增长而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号