首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
High-κ dielectrics are promising candidates to increase capacitor integration densities but their properties depend on manufacturing process and frequency because relaxation and resonance mechanisms occur. Complementary characterization protocols are needed to analyze high-κ insulator behaviour from DC to microwave frequencies. The extraction of Plasma Enhanced Atomic Layer Deposition HfO2 and ZrO2 complex permittivity was performed up to 5 GHz using dedicated test vehicles allowing an in situ characterization as a function of dielectric thickness. The measurement procedure was thus validated, highlighting the potentiality of these two dielectrics to cover a wide range of frequencies.  相似文献   

2.
New ZrO2/Al2O3/ZrO2 (ZAZ) dielectric film was successfully developed for DRAM capacitor dielectrics of 60 nm and below technologies. ZAZ dielectric film grown by ALD has a mixture structure of crystalline phase ZrO2 and amorphous phase Al2O3 in order to optimize dielectric properties. ZAZ TIT capacitor showed small Tox.eq of 8.5 Å and a low leakage current density of 0.35 fA/cell, which meet leakage current criteria of 0.5 fA/cell for mass production. ZAZ TIT capacitor showed a smaller cap leak fail bit than HAH capacitor and stable leakage current up to 550 °C anneal. TDDB (time dependent dielectric breakdown) behavior reliably satisfied the 10-year lifetime criteria within operation voltage range.  相似文献   

3.
A Ge-stabilized tetragonal ZrO2 (t-ZrO2) film with permittivity (κ) of 36.2 was formed by depositing a ZrO2/Ge/ZrO2 laminate and a subsequent annealing at 600 °C, which is a more reliable approach to control the incorporated amount of Ge in ZrO2. On Si substrates, with thin SiON as an interfacial layer, the SiON/t-ZrO2 gate stack with equivalent oxide thickness (EOT) of 1.75 nm shows tiny amount of hysteresis and negligible frequency dispersion in capacitance-voltage (C-V) characteristics. By passivating leaky channels derived from grain boundaries with NH3 plasma, good leakage current of 4.8 × 10−8 A/cm2 at Vg = Vfb − 1 V is achieved and desirable reliability confirmed by positive bias temperature instability (PBTI) test is also obtained.  相似文献   

4.
The etching mechanism of ZrO2 thin films in BCl3/Ar plasma was investigated using a combination of experimental and modeling methods. It was found that an increase in the Ar mixing ratio causes the non-monotonic behavior of the ZrO2 etch rate which reaches a maximum of 41.4 nm/min at about 30-35% Ar. Langmuir probe measurements and plasma modeling indicated the noticeable influence of a BCl3/Ar mixture composition on plasma parameters and active species kinetics that results in non-linear changes of both densities and fluxes for Cl, BCl2 and . From the model-based analysis of surface kinetics, it was shown that the non-monotonic behavior of the ZrO2 etch rate can be associated with the concurrence of chemical and physical pathways in ion-assisted chemical reaction.  相似文献   

5.
ZrO2 thin films were deposited by the atomic layer deposition process on Si substrates using tetrakis(N,N′-dimethylacetamidinate) zirconium (Zr-AMD) as a Zr precursor and H2O as an oxidizing agent. Tetrakis (ethylmethylamino) zirconium (TEMA-Zr) was also evaluated for a comparative study. Physical properties of ALD-derived ZrO2 thin films were studied using ellipsometry, grazing incidence XRD (GI-XRD), high resolution TEM (HRTEM), and atomic force microscopy (AFM). The ZrO2 deposited using Zr-AMD showed a better thermal stability at high substrate temperature (>300 °C) compared to that using TEMA-Zr. GI-XRD analysis reveals that after 700 °C anneal both ZrO2 films enter tetragonal phase. The electrical properties of N2-annealed ZrO2 film using Zr-AMD exhibit an EOT of 1.2 nm with leakage current density as low as 2 × 10−3 A/cm2 (@Vfb−1 V). The new Zr amidinate is a promising ALD precursor for high-k dielectric applications.  相似文献   

6.
In this article, the conduction mechanisms of metal-oxide-semiconductor with vacuum annealed Lanthana (La2O3) oxide film are investigated. Lanthana films with thicknesses of 3.5, 4.7, and 11 nm were deposited by E-beam evaporation on n-Si (100), and annealed at various temperatures (300-500 °C) in ultra-high vacuum (10−10-10−9 Torr) for 90 min. From the measurement of spectroscopic ellipsometry, it is found that film thickness is increased with annealing temperature, which would be cause of flat-band voltage shift (ΔVFB) due to the growth of interfacial layer. From the capacitance measurement, it is found that ΔVFB of the film is reduced by post-deposition anneal (PDA) compared to that of as-deposited film, but increase again at high temperature annealing, especially in the case of thin film (3.5 nm). From the applied voltage and temperature dependence of the leakage current of the film, with different gate electrode materials (Ag, Al, and Pt), it is shown that the leakage currents are associated with ohmic and Poole-Frenkel (P-F) conductions when flat-band voltage (VFB) is less than zero, and ohmic and Space-Charge-Limited Current (SCLC) conductions when VFB is greater than zero. The dielectric constants obtained from P-F conduction for Al gate electrode case is found to be 11.6, which is consistent with the C-V result 11.9. Barrier height of trap potential well is found to be 0.24 eV from P-F conduction. Based on SCLC theory, leakage currents of 3.5 and 11 nm films with different PDA temperatures are explained in terms of oxide trap density.  相似文献   

7.
Spectroscopic ellipsometry (SE) with photon energy 0.75–6.5 eV at room temperature has been used to derive the optical properties of high-k ZrO2 thin films on Si(1 0 0) substrates prepared by nitrogen-assisted, direct current reactive magnetron sputtering. The Tauc–Lorentz dispersion method was adopted to model the optical dispersion functions of the thin films as a function of annealing temperature. Excellent agreement has been found between the SE fitting results and X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) results, indicating that our model adequately described the measured SE data. Optical band gaps (Eg) were also obtained based on the extracted absorption edge. Our results suggest that nitrogen-assisted process can effectively limit the interfacial layer growth in high-k oxides.  相似文献   

8.
HfO2 films were grown by atomic vapour deposition (AVD) on SiO2/Si (1 0 0) substrates. The positive shift of the flat band voltage of the HfO2 based metal-oxide-silicon (MOS) devices indicates the presence of negative fixed charges with a density of 5 × 1012 cm−2. The interface trap charge density of HfO2/SiO2 stacks can be reduced to 3 × 1011 eV−1 cm−2 near mid gap, by forming gas annealing. The extracted work function of 4.7 eV preferred the use of TiN as metal gate for PMOS transistors. TiN/HfO2/SiO2 gate stacks were integrated into gate-last-formed MOSFET structures. The extracted maximum effective mobility of HfO2 based PMOS transistors is 56 cm2/Vs.  相似文献   

9.
在室温下用真空热蒸发法在玻璃基片上制备Sn/Cu/ZnS 前躯体膜层,然后对其在550C 下在硫气氛中硫化3小时以制得Cu2ZnSnS4 (CZTS) 多晶薄膜。对该薄膜进行X射线衍射(XRD)、能量色散X射线光谱(EDX)、紫外可见近红外分光光度计、霍尔测量系统和3D光学显微镜等分析测试。实验结果表明,当[Cu]/([Zn] [Sn]) =0.83和[Zn]/[Sn] =1.15时,该CZTS薄膜在光子能量范围在1.5 - 3.5 eV 时其吸收系数大于4.0104cm-1 ,直接带隙为1.47 eV。其载流子浓度、电阻率和迁移率分别为7.971016 cm-3, 6.06 Ω.cm, 12.9 cm2/(V.s), 导电类型为p型。因此,所制备出的CZTS 薄膜适合作为太阳电池的吸收层材料。  相似文献   

10.
HfO2 dielectric layers were grown on the p-type Si (100) substrate by metal-organic molecular beam epitaxy (MOMBE). Hafnium-tetra-butoxide, Hf(O·t-C4H9)4 was used as a Hf precursor and Argon gas was used as a carrier gas. The thickness of the HfO2 film and intermediate SiO2 layer were measured by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The properties of the HfO2 layers were evaluated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high frequency (HF) capacitance-voltage (C-V) measurement, and current-voltage (I-V) measurement. C-V and I-V measurements have shown that HfO2 layer grown by MOMBE has a high dielectric constant (k) of 20-22 and a low-level of leakage current density. The growth rate is affected by various process variables such as substrate temperature, bubbler temperature, Ar and O2 gas flows and growth time. Since the ratio of O2 and Ar gas flows are closely correlated, the effect of variations in O2/Ar flow ratio on growth rate is also investigated using statistical modeling methodology.  相似文献   

11.
Tantalum pentoxide (Ta2O5) deposited by pulsed DC magnetron sputtering technique as the gate dielectric for 4H-SiC based metal-insulator-semiconductor (MIS) structure has been investigated. A rectifying current-voltage characteristic was observed, with the injection of current occurred when a positive DC bias was applied to the gate electrode with respect to the n type 4H-SiC substrate. This undesirable behavior is attributed to the relatively small band gap of Ta2O5 of around 4.3 eV, resulting in a small band offset between the 4H-SiC and Ta2O5. To overcome this problem, a thin thermal silicon oxide layer was introduced between Ta2O5 and 4H-SiC. This has substantially reduced the leakage current through the MIS structure. Further improvement was obtained by annealing the Ta2O5 at 900 °C in oxygen. The annealing has also reduced the effective charge in the dielectric film, as deduced from high frequency C-V measurements of the Ta2O5/SiO2/4H-SiC capacitors.  相似文献   

12.
采用In0.74Al0.26As/In0.74Ga0.26As/InxAl1-xAs异质结构多层半导体作为半导体层,制备了金属-绝缘体-半导体(MIS)电容器。其中,SiNx和SiNx/Al2O3分别作为MIS电容器的绝缘层。高分辨率透射电子显微镜和X射线光电子能谱的测试结果表明,与通过电感耦合等离子体化学气相沉积生长的SiNx相比,通过原子层沉积生长的Al2O3可以有效地抑制Al2O3和In0.74Al0.26As界面的In2O3的含量。根据MIS电容器的电容-电压测量结果,计算得到SiNx/Al2O3/In...  相似文献   

13.
本文研究了不同厚度的氧化铝对MIM电容直流和射频特性的影响。在1MHz下,对于20nm氧化铝MIM电容,其拥有3850 pF/mm2的高电容密度和可接受的681 ppm/V2的VCC-α电压系数。1MHz时突出的74 ppm/V2VCC-α电压系数,8.2GHz谐振频率以及2GHz时41的Q值可以从100nm氧化铝MIM电容获得。采用GaAs工艺以及原子层淀积制造的高性能ALD氧化铝MIM电容很有可能成为GaAs射频集成电路很有前景的候选器件。  相似文献   

14.
Heteroepitaxial LaFeO3(1 1 0) thin films with a thickness of 150 nm were grown on LaAlO3(0 0 1) by reactive sputtering in an inverted cylindrical magnetron geometry. Equilibrium conductivity was measured as a function of partial pressure of oxygen at T=1000 °C, and logσ plotted vs. logP(O2) showed a minimum in conductivity for P(O2)=10−11 atm and a linear response between 10−10 and 1 atm. This linear response makes thin films of LaFeO3 a promising material for oxygen sensor applications. We have also measured the time response of the film conductivity upon an abrupt change in the partial pressure of ambient oxygen from 10−2 to 10−3 atm, which was determined at 60 s for T=700 °C and <3.5 s at T=1000 °C.  相似文献   

15.
The HfO2 high-k thin films have been deposited on p-type (1 0 0) silicon wafer using RF magnetron sputtering technique. The XRD, AFM and Ellipsometric characterizations have been performed for crystal structure, surface morphology and thickness measurements respectively. The monoclinic structured, smooth surface HfO2 thin films with 9.45 nm thickness have been used for Al/HfO2/p-Si metal-oxide-semiconductor (MOS) structures fabrication. The fabricated Al/HfO2/Si structure have been used for extracting electrical properties viz dielectric constant, EOT, barrier height, doping concentration and interface trap density through capacitance voltage and current-voltage measurements. The dielectric constant, EOT, barrier height, effective charge carriers, interface trap density and leakage current density are determined are 22.47, 1.64 nm, 1.28 eV, 0.93 × 1010, 9.25 × 1011 cm−2 eV−1 and 9.12 × 10−6 A/cm2 respectively for annealed HfO2 thin films.  相似文献   

16.
采用水热法和电化学沉积法,成功制备了包覆有SnO2纳米颗粒的WO3纳米棒阵列薄膜,退火处理后形成WO3/SnO2异质结复合薄膜。通过改变SnO2的沉积时间得到了复合薄膜的最佳制备条件。采用XRD,FESEM对WO3/SnO2复合薄膜的物相和形貌进行了分析,通过电化学工作站对WO3/SnO2复合薄膜的光电性能进行了研究,结果表明,电沉积时间为120 s时,WO3/SnO2复合薄膜具有最小的阻抗,且在0.6 V的偏压下光电流密度为0.46 mA/cm2,相比于单一WO3纳米棒薄膜,表现出更好的光电化学性能。  相似文献   

17.
This study investigates a sputtered Sm2O3 thin film to apply into a resistive random access memory device. The proposed device exhibits a stable resistance ratio of about 2.5 orders after 104 cycling bias pulses and no degradation for retention characteristics monitored after an endurance test at 85 °C. The conduction mechanisms for low and high resistance states are dominated by ohmic behavior and trap-controlled space-charge limited current, respectively. The resistance switching is ascribed to the formation/rupture of conductive filaments.  相似文献   

18.
刘丽  李守春  郭欣  何越  王连元 《半导体学报》2016,37(1):013005-5
In2O3-Fe2O3 nanotubes are synthesized by an electrospinning method. The as-synthesized materials are characterized by scanning electron microscope and X-ray powder diffraction. The gas sensing results show that In2O3-Fe2O3 nanotubes exhibit excellent sensing properties to acetone and formaldehyde at different operating temperatures. The responses of gas sensors based on In2O3-Fe2O3 nanotubes to 100 ppm acetone and 100 ppm formaldehyde are 25 (240℃) and 15 (260℃), and the response/recovery times are 3/7 s and 4/7 s, respectively. The responses of In2O3-Fe2O3 nanotubes to 1 ppm acetone (240℃) and formaldehyde (260℃) are 3.5 and 1.8, respectively. Moreover, the gas sensor based on In2O3-Fe2O3 nanotubes also possesses an excellent selectivity to acetone and formaldehyde.  相似文献   

19.
使用一步蒸发法制备了CZTSe太阳电池. 研究了不同硒蒸发温度对CZTSe薄膜结构特性的影响. 通过硒蒸发温度与初始阶段二元硒化物的关系解释了实验现象。当Se蒸发温度超过一定值Sn的缺失现象停止时,不需要继续提高Se的蒸发温度可以减少生产中Se的消耗。最终在较合适的230 oC 硒蒸发温度下制备出效率为2.32%(有效面积0.34cm2)的CZTSe太阳电池。  相似文献   

20.
Ternary sphere-like Cu2SnS3(CTS) semiconductor and 2D hexagonal sheets were synthesized via a simple solvothermal method using PVP as the surface ligand at two temperatures of 180 and 220℃. The structural, morphological, and chemical compositions as well as optical properties of as-synthesized CTS particles were characterized using X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectrometry (EDS), field emission scanning electron microscopy (FESEM), and UV-Vis spectroscopy. The size of sphere-like particles and the side length of hexagonal sheets were within the range of 120-140 nm and 500 nm-2 μm, respectively. FESEM, XRD, and EDS were analyzed to investigate the mechanism of the morphological evolution of CTS particles. CTS particles showed proliferation of Sn atomic ratio, which is strongly sensitive to reaction temperature and, highly affects the increase of band gap energy from 1.36 to 1.53 eV due to generation metal defects and formation SnS2. The optical analysis via the transmittance and reflectance reveals that the band-gap energy of dropcasted CTS thin films decreases after annealing due to grain growth and change of chemical compositions. Photo-responses of CTS nanocrystal thin films indicated a considerable increase in the conductivity of the films under light illumination. All these results showed the potential of these films for solar cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号