首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neural networks that learn from fuzzy if-then rules   总被引:2,自引:0,他引:2  
An architecture for neural networks that can handle fuzzy input vectors is proposed, and learning algorithms that utilize fuzzy if-then rules as well as numerical data in neural network learning for classification problems and for fuzzy control problems are derived. The learning algorithms can be viewed as an extension of the backpropagation algorithm to the case of fuzzy input vectors and fuzzy target outputs. Using the proposed methods, linguistic knowledge from human experts represented by fuzzy if-then rules and numerical data from measuring instruments can be integrated into a single information processing system (classification system or fuzzy control system). It is shown that the scheme works well for simple examples  相似文献   

2.
Design of fuzzy systems using neurofuzzy networks   总被引:5,自引:0,他引:5  
Introduces a systematic approach for fuzzy system design based on a class of neural fuzzy networks built upon a general neuron model. The network structure is such that it encodes the knowledge learned in the form of if-then fuzzy rules and processes data following fuzzy reasoning principles. The technique provides a mechanism to obtain rules covering the whole input/output space as well as the membership functions (including their shapes) for each input variable. Such characteristics are of utmost importance in fuzzy systems design and application. In addition, after learning, it is very simple to extract fuzzy rules in the linguistic form. The network has universal approximation capability, a property very useful in, e.g., modeling and control applications. Here we focus on function approximation problems as a vehicle to illustrate its usefulness and to evaluate its performance. Comparisons with alternative approaches are also included. Both, non-noisy and noisy data have been studied and considered in the computational experiments. The neural fuzzy network developed here and, consequently, the underlying approach, has shown to provide good results from the accuracy, complexity, and system design points of view.  相似文献   

3.
We examine the performance of a fuzzy genetics-based machine learning method for multidimensional pattern classification problems with continuous attributes. In our method, each fuzzy if-then rule is handled as an individual, and a fitness value is assigned to each rule. Thus, our method can be viewed as a classifier system. In this paper, we first describe fuzzy if-then rules and fuzzy reasoning for pattern classification problems. Then we explain a genetics-based machine learning method that automatically generates fuzzy if-then rules for pattern classification problems from numerical data. Because our method uses linguistic values with fixed membership functions as antecedent fuzzy sets, a linguistic interpretation of each fuzzy if-then rule is easily obtained. The fixed membership functions also lead to a simple implementation of our method as a computer program. The simplicity of implementation and the linguistic interpretation of the generated fuzzy if-then rules are the main characteristic features of our method. The performance of our method is evaluated by computer simulations on some well-known test problems. While our method involves no tuning mechanism of membership functions, it works very well in comparison with other classification methods such as nonfuzzy machine learning techniques and neural networks.  相似文献   

4.
On some idea of a neuro-fuzzy controller   总被引:1,自引:0,他引:1  
The paper presents a neuro-fuzzy technique for the design of controllers. This technique can effectively deal with two main types of knowledge which usually describe the control strategy for complex systems, that is, a qualitative, linguistic, fuzzy knowledge usually expressed in the form of linguistic rules, and a quantitative, nonfuzzy information in the form of measurements and other numerical data. The proposed technique combines artificial neural networks with fuzzy logic yielding a structure that can be called a neuro-fuzzy controller or, broadly speaking, a fuzzy neural network. The paper presents a general structure of a neuro-fuzzy controller and two essential phases of its design, that is, a learning phase and a functioning phase. In turn, a numerical example which illustrates how the proposed controller works is presented. Finally, the paper describes an application of a neuro-fuzzy control to inverter drive systems for electric vehicles. The results of simulation and experimental investigations carried out on the laboratory model of an inverter drive system are also provided.  相似文献   

5.
In mechanical equipment monitoring tasks, fuzzy logic theory has been applied to situations where accurate mathematical models are unavailable or too complex to be established, but there may exist some obscure, subjective and empirical knowledge about the problem under investigation. Such kind of knowledge is usually formalized as a set of fuzzy relationships (rules) on which the entire fuzzy system is based upon. Sometimes, the fuzzy rules provided by human experts are only partial and rarely complete, while a set of system input/output data are available. Under such situations, it is desirable to extract fuzzy relationships from system data and combine human knowledge and experience to form a complete and relevant set of fuzzy rules. This paper describes application of B-spline neural network to monitor centrifugal pumps. A neuro-fuzzy approach has been established for extracting a set of fuzzy relationships from observation data, where B-spline neural network is employed to learn the internal mapping relations from a set of features/conditions of the pump. A general procedure has been setup using the basic structure and learning mechanism of the network and finally, the network performance and results have been discussed.  相似文献   

6.
Knowledge Incorporation into Neural Networks From Fuzzy Rules   总被引:1,自引:0,他引:1  
The incorporation of prior knowledge into neural networks can improve neural network learning in several respects, for example, a faster learning speed and better generalization ability. However, neural network learning is data driven and there is no general way to exploit knowledge which is not in the form of data input-output pairs. In this paper, we propose two approaches for incorporating knowledge into neural networks from fuzzy rules. These fuzzy rules are generated based on expert knowledge or intuition. In the first approach, information from the derivative of the fuzzy system is used to regularize the neural network learning, whereas in the second approach the fuzzy rules are used as a catalyst. Simulation studies show that both approaches increase the learning speed significantly.  相似文献   

7.

In this article, a new neuro-fuzzy hybrid approach to human workplace design and simulation is proposed. Problems related to human workplace design such as human-machine modeling, measurement and analysis, workplace layout design and planning, workplace evaluation and simulation are discussed in detail. The complex human-machine interactions in workplace design are described with human and workstation parameters within a comprehensive human-machine system model. Based on this model, procedures and algorithms for workplace design, ergonomic evaluation, and optimization are presented in an integrated framework. With a combination of individual neural and fuzzy techniques, the neuro-fuzzy hybrid scheme implements fuzzy if-then rules block for workplace design and evaluation by trainable neural network architectures. For training and test purposes, simulated assembly tasks are carried out on a self-built multiadjustable laboratory workstation with a flexible PEAK Motus motion measurement and analysis system. The trained fuzzy neural networks are capable of predicting the operator's posture and joint angles of motion associated with a range of workstation configurations. They can also be used for design/layout and adjustment of manual assembly workstations. The developed system provides a unified, intelligent computational framework for human-machine system design and simulation. In the end, case studies for workplace design and simulation are presented to validate and illustrate the developed neuro-fuzzy design scheme and system.  相似文献   

8.
An adaptive neural fuzzy filter and its applications   总被引:5,自引:0,他引:5  
A new kind of nonlinear adaptive filter, the adaptive neural fuzzy filter (ANFF), based upon a neural network's learning ability and fuzzy if-then rule structure, is proposed in this paper. The ANFF is inherently a feedforward multilayered connectionist network which can learn by itself according to numerical training data or expert knowledge represented by fuzzy if-then rules. The adaptation here includes the construction of fuzzy if-then rules (structure learning), and the tuning of the free parameters of membership functions (parameter learning). In the structure learning phase, fuzzy rules are found based on the matching of input-output clusters. In the parameter learning phase, a backpropagation-like adaptation algorithm is developed to minimize the output error. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially, and both the structure learning and parameter learning are performed concurrently as the adaptation proceeds. However, if some linguistic information about the design of the filter is available, such knowledge can be put into the ANFF to form an initial structure with hidden nodes. Two major advantages of the ANFF can thus be seen: 1) a priori knowledge can be incorporated into the ANFF which makes the fusion of numerical data and linguistic information in the filter possible; and 2) no predetermination, like the number of hidden nodes, must be given, since the ANFF can find its optimal structure and parameters automatically  相似文献   

9.
介绍了一种利用模糊神经元网络实现车辆自动驾驶的设计方案.其基本设计思想 是首先通过模糊逻辑描述驾驶者的驾驶行为,然后利用驾驶者实际驾驶时采集的车辆运行情 况作为训练数据,通过神经元网络的自学习功能修改和改进模糊控制所需的输入/输出信 号的隶属度函数以及模糊推理的运算关系,做到简单控制实现与复杂学习算法的有效结合, 从而实现模糊神经元控制.本方案为智能车辆实现个性化自主或辅助自动驾驶提供了一种非 常有效的机制.  相似文献   

10.
Research and Design of a Fuzzy Neural Expert System   总被引:2,自引:0,他引:2       下载免费PDF全文
We have developed a fuzzy neural expert system that has the precision and learning ability of a neural network.Knowledge is acquired from domain experts as fuzzy rules and membership functions.Then,they are converted into a neural network which implements fuzzy inference without rule matching.The neural network is applied to problem-solving and learns from the data obtained during operation to enhance the accuracy.The learning ability of the neural network makes it easy to modify the membership functions defined by domain experts.Also,by modifying the weights of neural networks adaptively,the problem of belief propagation in conventional expert systems can be solved easily.Converting the neural network back into fuzzy rules and membership functions helps explain the inner representation and operation of the neural network.  相似文献   

11.
《Image and vision computing》2001,19(9-10):699-707
In the field of pattern recognition, the combination of an ensemble of neural networks has been proposed as an approach to the development of high performance image classification systems. However, previous work clearly showed that such image classification systems are effective only if the neural networks forming them make different errors. Therefore, the fundamental need for methods aimed to design ensembles of ‘error-independent’ networks is currently acknowledged. In this paper, an approach to the automatic design of effective neural network ensembles is proposed. Given an initial large set of neural networks, our approach is aimed to select the subset formed by the most error-independent nets. Reported results on the classification of multisensor remote-sensing images show that this approach allows one to design effective neural network ensembles.  相似文献   

12.
GenSoFNN: a generic self-organizing fuzzy neural network   总被引:3,自引:0,他引:3  
Existing neural fuzzy (neuro-fuzzy) networks proposed in the literature can be broadly classified into two groups. The first group is essentially fuzzy systems with self-tuning capabilities and requires an initial rule base to be specified prior to training. The second group of neural fuzzy networks, on the other hand, is able to automatically formulate the fuzzy rules from the numerical training data. No initial rule base needs to be specified prior to training. A cluster analysis is first performed on the training data and the fuzzy rules are subsequently derived through the proper connections of these computed clusters. However, most existing neural fuzzy systems (whether they belong to the first or second group) encountered one or more of the following major problems. They are (1) inconsistent rule-base; (2) heuristically defined node operations; (3) susceptibility to noisy training data and the stability-plasticity dilemma; and (4) needs for prior knowledge such as the number of clusters to be computed. Hence, a novel neural fuzzy system that is immune to the above-mentioned deficiencies is proposed in this paper. This new neural fuzzy system is named the generic self-organizing fuzzy neural network (GenSoFNN). The GenSoFNN network has strong noise tolerance capability by employing a new clustering technique known as discrete incremental clustering (DIC). The fuzzy rule base of the GenSoFNN network is consistent and compact as GenSoFNN has built-in mechanisms to identify and prune redundant and/or obsolete rules. Extensive simulations were conducted using the proposed GenSoFNN network and its performance is encouraging when benchmarked against other neural and neural fuzzy systems.  相似文献   

13.
The Hybrid neural Fuzzy Inference System (HyFIS) is a multilayer adaptive neural fuzzy system for building and optimizing fuzzy models using neural networks. In this paper, the fuzzy Yager inference scheme, which is able to emulate the human deductive reasoning logic, is integrated into the HyFIS model to provide it with a firm and intuitive logical reasoning and decision-making framework. In addition, a self-organizing gaussian Discrete Incremental Clustering (gDIC) technique is implemented in the network to automatically form fuzzy sets in the fuzzification phase. This clustering technique is no longer limited by the need to have prior knowledge about the number of clusters present in each input and output dimensions. The proposed self-organizing Yager based Hybrid neural Fuzzy Inference System (SoHyFIS-Yager) introduces the learning power of neural networks to fuzzy logic systems, while providing linguistic explanations of the fuzzy logic systems to the connectionist networks. Extensive simulations were conducted using the proposed model and its performance demonstrates its superiority as an effective neuro-fuzzy modeling technique.  相似文献   

14.
如何生成最优的模糊规则数及模糊规则的自动生成和修剪是模糊神经网络训练算法研究的重点。针对这一问题,本文提出了基于UKF的自适应模糊推理神经网络(UKF-ANFIS)。首先,通过减法聚类确定UKF-ANFIS的模糊规则及其高斯隶属函数的中心和宽度参数;其次,分析了模糊神经网络的非线性动力系统表示,并用LLS和UKF分别学习线性和非线性的参数;然后,用误差下降率方法作为模糊规则修剪的策略,删除作用不大的规则;最后,通过典型的函数逼近和系统辨识实例,表明本文算法得到的模糊神经网络的结构更为紧凑,泛化性能也更佳。  相似文献   

15.
The paper considers the neuro-fuzzy position control of multi-finger robot hand in tele-operation system—an active master–slave hand system (MSHS) for demining. Recently, fuzzy control systems utilizing artificial intelligent techniques are also being actively investigated in robotic area. Neural network with their powerful learning capability are being sought as the basis for many adaptive control systems where on-line adaptation can be implemented. Fuzzy logic on the other hand has been proved to be rather popular in many control system applications providing a rule-base like structure. In this paper, the design and optimization process of fuzzy position controller is supported by learning techniques derived from neural network where a radial basis function (RBF) neural network is implemented to learn fuzzy rules and membership functions with predictor of recurrent neural network (RNN) model. The results of experiment show that based on the predictive capability of RNN model neuro-fuzzy controller with good adaptation and robustness capability can be designed.  相似文献   

16.
正负模糊规则系统、极限学习机与图像分类   总被引:1,自引:1,他引:0       下载免费PDF全文
传统的图像分类一般只利用了图像的正规则,忽略了负规则在图像分类中的作用。Nguyen将负规则引入图像分类,提出将正负模糊规则相结合形成正负模糊规则系统,并将其用于遥感图像和自然图像的分类。实验证明,其在图像分类过程中取得了很好的效果。他们提出的前馈神经网络模型在调整权值时利用了梯度下降法,由于步长选择不合理或陷入局部最优从而使训练速度受到了限制。极限学习机(ELM)是一种单隐层前馈神经网络(SLFN)学习算法,具有学习速度快,泛化性能好的优点。本文证明了极限学习机与正负模糊规则系统的实质是等价的,遂将其用于图像分类。实验结果说明了极限学习机能很好的利用正负模糊规则相结合的方法对图像进行分类,实验结果较为理想。  相似文献   

17.
The authors previously introduced a fuzzy version of Kohonen's well-known self-organizing map neural network model. In this novel neuro-fuzzy system, the neurons of Kohonen's original model are replaced by fuzzy rules. Each fuzzy rule is composed of fuzzy sets and an output singleton. Since the fuzzy self-organizing map is a modified version of Kohonen's original model, the self-organizing map and the learning vector quantization learning laws can be used to tune the neuro-fuzzy system. Originally, the fuzzy self-organizing map was intended to be used as an unknown function approximator, while Kohonen's self-organizing map is primarily used as a neural classifier. In this paper, the authors show how the fuzzy self-organizing map can also be used as a neuro-fuzzy classifier. Simulation results show that, in chemical agent detection, the fuzzy self-organizing map not only gives better classification results than Kohonen's model, but it also has smaller number of fuzzy rules than the corresponding neurons required by Kohonen's self-organizing map  相似文献   

18.
This paper introduces a hybrid system termed cascade adaptive resonance theory mapping (ARTMAP) that incorporates symbolic knowledge into neural-network learning and recognition. Cascade ARTMAP, a generalization of fuzzy ARTMAP, represents intermediate attributes and rule cascades of rule-based knowledge explicitly and performs multistep inferencing. A rule insertion algorithm translates if-then symbolic rules into cascade ARTMAP architecture. Besides that initializing networks with prior knowledge can improve predictive accuracy and learning efficiency, the inserted symbolic knowledge can be refined and enhanced by the cascade ARTMAP learning algorithm. By preserving symbolic rule form during learning, the rules extracted from cascade ARTMAP can be compared directly with the originally inserted rules. Simulations on an animal identification problem indicate that a priori symbolic knowledge always improves system performance, especially with a small training set. Benchmark study on a DNA promoter recognition problem shows that with the added advantage of fast learning, cascade ARTMAP rule insertion and refinement algorithms produce performance superior to those of other machine learning systems and an alternative hybrid system known as knowledge-based artificial neural network (KBANN). Also, the rules extracted from cascade ARTMAP are more accurate and much cleaner than the NofM rules extracted from KBANN.  相似文献   

19.
This paper introduces a system for fault detection and classification in AC motors based on soft computing. The kernel of the system is a neuro-fuzzy system, FasArt (Fuzzy Adaptive System ART-based), that permits the detection of a fault if it is in progress and its classification, with very low detection and diagnosis times that allow decisions to be made, avoiding definitive damage or failure when possible. The system has been tested on an AC motor in which 15 nondestructive fault types were generated, achieving a high level of detection and classification. The knowledge stored in the neuro-fuzzy system has been extracted by a fuzzy rule set with an acceptable degree of interpretability and without incoherency amongst the extracted rules.  相似文献   

20.
Neural networks or connectionist models are massively parallel interconnections of simple neurons that work as a collective system, can emulate human performance and provide high computation rates. On the other hand, fuzzy systems are capable to model uncertain or ambiguous situations that are so often encountered in real life. One way for implementing fuzzy systems is through utilizations of the expert system architecture. Recently, many attempts have been made to “fuse” fuzzy systems and neural nets in order to achieve better performance in reasoning and decision making processes. The systems that result from such a fusion are called neuro-fuzzy inference systems and possess combined features. The purpose of the present paper is to propose such a neuro-fuzzy system by extending and improving the system of Keller et al. (1992). The present system makes use of Hamacher's fuzzy intersection function and Sugeno's complement function. After a brief outline of the operation of the system its features are established with the aid of four theorems which are fully proved. The capabilities of the system are shown by a set of simulation results derived for the case of trapezoidal fuzzy sets. These results are shown to be better than the ones obtained with the original neuro-fuzzy system of Keller et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号