首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is an effort to address the need for a non-cooking oil-based biodiesel. Here, the experimental work is done on a single cylinder, direct injection CI engine using cashew nut shell oil biodiesel blends under constant speed. The cashew nut shell liquid (CNSL) biodiesel is blended with the diesel fuel and used as biodiesel blend. Blends used for testing are B20, B40 and B60. The effect of the fuels on engine power, brake thermal efficiency (BTE) and exhaust gas temperature was determined by performance tests. The influences of blends on CO, CO2, HC and NOx emissions were investigated by emission tests. The BTE values of biodiesel are closer to diesel. Compared to diesel, all the biodiesel blends gave lesser unburnt hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. Slightly higher NOx emissions were found in CNSL biodiesel blends, which is typical of the other biodiesels.  相似文献   

2.
This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.  相似文献   

3.
This study investigates the biodiesel from Deccan hemp oil and its blends for the purpose of fuelling diesel engine. The performance and emission characteristics of Deccan hemp biodiesel are estimated and compared with diesel fuel. The experimental investigations are carried out with different blends of Deccan hemp biodiesel. Results show that brake thermal efficiency is improved significantly by 4.15% with 50 BDH when compared with diesel fuel. The Deccan hemp biodiesel reduces NOx, HC and CO emission along with a marginal increase in CO2 and smoke emissions with an increase in the biodiesel proportion in the diesel fuel. The improvement in heat release rates shows an increase in the combustion rate with different percentage blends of Deccan hemp biodiesel. From the engine test results, it has been established that 30–50 BDH of Deccan hemp biodiesel can be substituted for diesel.  相似文献   

4.
In this experiment, the performance, emission, and combustion characteristics of a diesel engine were tested using bio-fuel (Anise oil) at different loads. The main focus of this study was to compare the existing biodiesel blends with the proposed mixture (anise?+?cerium oxide) of biodiesel blends in terms of engine parameters, cost, efficiency, and pollution control. The blends used in this experiment are B10 (Biodiesel-10%), B20 (Biodiesel-20%), and B30 (Biodiesel-30%). The emission and performance parameters considered for the test are SFC (specific fuel consumption), CO (carbon monoxide), NOX (nitrogen oxide), and HC (hydrocarbon). These parameters were tested for different load conditions such as 0%, 25%, 50%, 75%, and 100%. From the results, it shows that SFC is lower for B20 blend compared to that of pure diesel fuel, while B10, B30, B40, and B50 blends have slightly higher values. From the experiment, it is found that emissions of the HC and NOx were reduced and CO emission is slightly higher than the pure diesel.  相似文献   

5.
As the decreasing availability of the fossil fuel is rising day by day, the search of alternate fuel that can be used as a substitute to the conventional fuels is rising rapidly. A new type of biofuel, chicha oil biodiesel, is introduced in this work for the purpose of fuelling diesel engine. Chicha oil was transesterified with methanol using potassium hydroxide as catalyst to obtain chicha oil methyl ester (COME). The calorific value of this biodiesel is lower, when compared to that of diesel. The COME and their blends of 20%, 40%, 60% and 80% with diesel were tested in a single cylinder, four stroke, direct injection diesel engine and the performance, combustion and emission results were compared with diesel. The test result indicates that there is a slight increase in brake thermal efficiency and decrease in brake-specific fuel consumption for all blended fuels when compared to that of diesel fuel. The use of biodiesel resulted in lower emissions of CO and HC and increased emissions of CO2 and NOx. The experimental results proved that the use of biodiesel (produced from chicha oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

6.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil.The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NOx and NO2 emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase.The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.  相似文献   

7.
The objective of this investigation was to find the effect of ethanol–gasoline blends as fuel on the performance and exhaust emission of a spark ignition (SI) engine. A four-stroke three-cylinder SI engine was used for this study. Performance tests were conducted for the three blends E5 (5% ethanol), E10 (10% ethanol) and E15 (15% of ethanol) as well as E0(100% gasoline) to evaluate their brake thermal efficiency, specific fuel consumption and mechanical efficiency, while exhaust emissions were also analysed for carbon monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2) and oxides of nitrogen (NOx) with varying torque conditions and constant speed of the engine. The results showed that blends of gasoline and ethanol increased the brake power, brake thermal efficiency and the fuel consumption. The CO and HC emissions concentration in the engine exhaust decreased while the NOx concentration increased.  相似文献   

8.
In this study, hydrocarbon fuel (HCF) was derived from waste transformer oil through a traditional base-catalysed trans-esterification process. The experimental investigations using its blends of 25%, 50%, 75%, 100% and diesel fuel were carried out separately. The HCF obtained from waste transformer oil is used in a direct injection (DI) diesel engine without any engine modification to evaluate its performance, emission and combustion characteristics. The results indicate that the engine operating on test fuel blends shows a marginal increase in brake thermal efficiency (BTE) with a significant reduction in smoke. Nitrous oxides (NOx) emission was slightly higher for test fuel blends than for diesel. The results show that at maximum load conditions, 25% HCF reduces carbon monoxide, smoke and hydrocarbon emission by 50%, 31% and 10%, respectively, whereas 50% HCF shows a greater BTE than other blends and is 12% higher than that of the diesel fuel. The combustion characteristics of fuel blends closely followed those of standard diesel.  相似文献   

9.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

10.
Exhaustion of crude oil resources, rise in fuel prices and necessity to find less-carbon fuel have encouraged to find an alternative fuel. Biodiesel is characterised by its fuel properties, which may have an adverse effect on performance and emission characteristics of the engine. Thus, it is necessary to trans-esterify the extracted orange oil and make it viable for diesel engine. In the present work, partially stabilised zirconia was used as a thermal barrier coating (TBC) for the combustion chamber components using plasma spray technique. The present study focused on the impact of TBC on performance and emission characteristics of a diesel engine with B1 (20% orange oil methyl ester with 80% diesel) sample and diesel. Increased brake thermal efficiency and reduced brake-specific fuel consumption are observed for B1 in the TBC engine. On comparing with the uncoated engine, the B1 in coated engine exhibited lower carbon monoxide, hydrocarbon, oxides of nitrogen and smoke emissions than diesel.  相似文献   

11.
In the present investigation, the effect of thermal barrier coated piston on the performance and emission characteristics of mahua-biodiesel-fuelled diesel engine was studied and compared with those of neat diesel fuel. The piston, cylinder walls and the valves of the engine were coated with 0.25?mm thickness of Al2O3 material without affecting the compression ratio of the engine. Experiments were conducted using diesel and biodiesel blend (B20) in the engine with and without coating. The results revealed that specific fuel consumption was decreased by 8.5% and the brake thermal efficiency was increased by 6.2% for biodiesel blend with coated engine compared with the base engine with neat diesel fuel. The exhaust emissions CO, NOx and HC emissions were also decreased for biodiesel blend with coated engine compared with base engine.  相似文献   

12.
Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NOx and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NOx and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NOx and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.  相似文献   

13.
Fuel crisis and environmental concerns have led researchers to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests and oil-bearing biomass materials. Vegetable oils have energy content comparable to that of diesel fuel. Straight vegetable oils posed several operational problems and durability problems when subjected to long-term usage in compression ignition engine. These problems are attributed to higher viscosity and lower volatility. In this study, performance and emission parameters of a diesel engine operating on neem oil and its blends of 5, 10, 15 and 20?vol% with ethanol, 1-propanol, 1-butanol and 1-pentanol are evaluated and compared with diesel operation. The results indicate that the brake thermal efficiency is improved with the use of neem oil–alcohol blends with respect to those of neat neem oil. The smoke intensity, CO and HC emissions with neem oil–alcohol blends are observed to be lower with respect to those of neat neem oil at higher loads. The NO x emission is very slightly reduced with the use of neem oil–alcohol blends except for the neem oil–ethanol blend compared with that of neat neem oil.  相似文献   

14.
The present work deals about the performance, emission and combustion characteristics of a four-cylinder, direct injection, water-cooled, Indica diesel engine fuelled with biodiesel produced through the hydrodynamic cavitation method from an underutilised and potential feedstock Yellow Oleander (Thevetia peruviana) oil. Engine tests were performed with neat diesel and biodiesel blends of 10%, 20% and 30% from Yellow Oleander oil at different engine speeds. Experimental results showed that biodiesel produced through the hydrodynamic cavitation technique with a 1%?w/w catalyst percentage, 6:1?molar ratio and 35?min reaction time was equal to 97.5%. During engine performance tests, biodiesel blends showed higher brake-specific fuel consumption, brake thermal efficiency (for lower blends up to 20%) and exhaust gas temperature than diesel fuel. Engine emissions showed higher nitrogen oxide, but a decreased amount of smoke opacity, carbon monoxide, unburned hydrocarbon and favourable pθ diagram as compared to diesel.  相似文献   

15.
Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NOx emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NOx emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NOx emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NOx emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.  相似文献   

16.
ABSTRACT

The improvement in engine performance and exhaust emissions reduction are the major important issues in developing a more efficient engine. The injection timing is one the major parameters that affect the engine performance and emissions for a diesel engine. The present work focused on characterising the in?uence of injection timing on engine performance and exhaust emissions. This has been critically investigated for B20?+?25?ppm (20% Mimusops Elangi methyl ester-80% diesel fuel?+?25?ppm of TiO2 nanoparticle) additive as alternative fuel. The B20?+25 ppm TiO2 nanoparticle additive produces more HC and CO emission, but reduce NOX emission when injection timing is retarded. Advancement in injection timing for B20?+25?ppm TiO2 nanoparticle additive results in an increase of brake thermal efficiency, decreases brake specific fuel consumption and giving out less HC, CO, smoke emissions but the marginal increase in the NOX emission.  相似文献   

17.
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NOx reduces slightly but the reduction is not statistically significant, while NO2 increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NOx emissions is small.  相似文献   

18.
ABSTRACT

In this present paper, an experimental study is carried out on a single cylinder, four-stroke variable compression ratio (VCR), direct injection diesel engine to analyse the performance characteristics of 20% karanja oil (B20) with diethyl ether, methanol and ethanol as an additives by substituting 5% and 10%, respectively. The engine is operated at the speed of 1500 rpm with VCRs 17 and 18. Analysis of performance parameters such as brake power, indicated power, brake thermal efficiency, mechanical efficiency, specific fuel consumption and indicated thermal efficiency are arrived by the IC engine analysis software which has been coupled with the VCR engine. The outcome data of these blends are to be compared with the ordinary diesel. The results are optimised by using the design of experiments (DOE) method in MINITAB 17.0 software to find out the suitable blend for the engine.  相似文献   

19.
The performance, exhaust emission and combustion analyses of a single cylinder spark ignition engine fuelled with extended range of ethanol–petrol blends were carried out successfully at full load conditions. Ethanol produced from raffia trunks was blended with petrol at different proportions by volume. In order to establish a baseline for comparison, the engine was first run on neat petrol. The engine performance parameters (engine torque, brake power, brake specific fuel consumption, brake mean effective pressure and brake thermal efficiency), exhaust emission parameters (CO, HC, CO2 and O2 emissions) and combustion parameters were determined for each blend of fuel at different engine speeds. The test results interestingly revealed that the addition of ethanol to petrol causes an improvement in combustion characteristics and significant reduction in exhaust emissions which in turn improved engine performance. In all, ethanol and its blends with petrol exhibited performance characteristics trends similar to that of petrol thus confirming them as suitable alternative fuels for spark ignition engines.  相似文献   

20.
Tyre pyrolysis oil (TPO) blend with diesel can be used as an alternate fuel. Tests have been carried out to analyse the energy and exergy characteristics of diesel engine fuelled by B10, B20 and B30 blend of TPO with diesel fuel. TPO was derived from waste automobile tyres through vacuum pyrolysis process (batch type). In this paper, the brake thermal efficiencies of TPO of different blends (10%, 20% and 30%) are compared with the pure diesel and discussed. Further, exergy and energy values of TPO–diesel with different blends are analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号