首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Portable Infrared Mineral Analyzer II (PIMA II) field spectrometer was used to measure infrared reflectance spectra (1·3-2·5 μm) of split drill core at 1 cm intervals in both the along-core and cross-core directions. These data were formatted into an image cube similar to that acquired by an imaging spectrometer with 600 spectral channels, and multi-spectral and hyperspectral analysis techniques were used for analysis. Colour images and enhancements provided visual displays of the spectral information, while real-time digital extraction of individual spectra allowed identification of minerals. Absorption band-depth mapping and spectral classification were used to map the spatial distribution of specific minerals in the core. Linear spectral unmixing provided estimated mineral abundances. Analysis results demonstrate that multi-spectral and hyperspectral image analysis methods can be used to produce detailed mineralogical maps of drill core. They suggest that the concepts and analytical techniques developed for analysis of hyperspectral image data can be applied to field and laboratory spectra in a variety of disciplines, and raise the question of the use of hyperspectral scanners in the laboratory.  相似文献   

2.
This paper addresses a generic problem in remote sensing by aerial hyperspectral imaging systems, that is, very low spatial and spectral repeatability of image cubes. Most analysts are either unaware of this problem or just ignore it. Hyperspectral image cubes acquired in consecutive flights over the same target should ideally be identical. In practice, two consecutive flights over the same target usually yield significant differences between the image cubes. These differences are due to variations in: target characteristics, solar illumination, atmospheric conditions and errors of the imaging system proper. Manufacturers of remote sensing imaging systems use sophisticated equipment to accurately calibrate their instruments, using optimal illumination and constant environment conditions. From a user's perspective, these calibration procedures are only of marginal interest because repeatability is ‘target dependent’. The analyst of hyperspectral imagery is primarily interested in the reliability of the end product, i.e. the repeatability of two image cubes consecutively acquired over the same target, after radiometric calibration, geo‐referencing and atmospheric corrections. Clearly, when the non‐repeatability variance is similar in magnitude to the variance of the spectral or spatial information of interest, it would be impossible to use it for classification or quantification prediction modelling. We present a simple approach for objective assessment of spatial and spectral repeatability by multiple image cube acquisitions, wherein the imaging system views a barium sulphate (BaSO4) painted panel illuminated by a halogen lamp and by consecutive flights over a reference target. The data analysis is based on several indexes, which were developed for quantifying the spectral and spatial repeatability of hyperspectral image cubes and for detecting outlier voxels. The spectral repeatability information can be used to average less repeatable spectral bands or to exclude them from the analysis. The spatial repeatability information may be used for identifying less repeatable regions of the target. Outlier voxels should be excluded from the analysis because they are grossly erroneous data. Modus operandi for image cube acquisitions is provided, whereby the repeatability may be improved. Spatial and spectral averaging algorithms and software were developed for increasing the repeatability of image cubes in post‐processing.  相似文献   

3.
Hyperspectral imaging is gaining a significant role in agricultural remote sensing applications. Its data unit is the hyperspectral cube which holds spatial information in two dimensions while spectral band information of each pixel in the third dimension. The classification accuracy of hyperspectral images (HSI) increases significantly by employing both spatial and spectral features. For this work, the data was acquired using an airborne hyperspectral imager system which collected HSI in the visible and near-infrared (VNIR) range of 400 to 1000 nm wavelength within 180 spectral bands. The dataset is collected for nine different crops on agricultural land with a spectral resolution of 3.3 nm wavelength for each pixel. The data was cleaned from geometric distortions and stored with the class labels and annotations of global localization using the inertial navigation system. In this study, a unique pixel-based approach was designed to improve the crops' classification accuracy by using the edge-preserving features (EPF) and principal component analysis (PCA) in conjunction. The preliminary processing generated the high-dimensional EPF stack by applying the edge-preserving filters on acquired HSI. In the second step, this high dimensional stack was treated with the PCA for dimensionality reduction without losing significant spectral information. The resultant feature space (PCA-EPF) demonstrated enhanced class separability for improved crop classification with reduced dimensionality and computational cost. The support vector machines classifier was employed for multiclass classification of target crops using PCA-EPF. The classification performance evaluation was measured in terms of individual class accuracy, overall accuracy, average accuracy, and Cohen kappa factor. The proposed scheme achieved greater than 90 % results for all the performance evaluation metrics. The PCA-EPF proved to be an effective attribute for crop classification using hyperspectral imaging in the VNIR range. The proposed scheme is well-suited for practical applications of crops and landfill estimations using agricultural remote sensing methods.  相似文献   

4.
介绍一种Offner结构高分辨率推扫式成像光谱仪的设计,包括光学结构设计、数据获取与存储系统配置、基于数据库的光谱图像拼接软件设计以及成像光谱仪波长标定和辐射标定方法.其次介绍成像光谱仪在青藏高原陆面敏感因子航空遥感实验中的使用情况,包括实验概况、成像光谱仪及其采集系统在机舱内的安装调试、光谱仪的航拍参数以及航带光谱图像的拼接处理,最终获取到高分辨率的高光谱图像立方体.仪器的首次航拍飞行实验取得预期成果.  相似文献   

5.
高光谱遥感数据挖掘若干基本问题的研究   总被引:1,自引:0,他引:1  
面向高光谱遥感信息的特点,分析了高光谱遥感数据挖掘的形成和作用,在构建其框架体系与处理流程的基础上。探讨了可以发现的知识类型和典型的挖掘模式,并分析了一些主要挖掘算法和关键技术。最后对高光谱遥感数据挖掘潜在的应用方向进行了探讨。  相似文献   

6.
张帆  杜博  张良培  张乐飞 《计算机科学》2014,41(12):275-279
如何准确识别图像中的类别信息,是计算机视觉和模式识别领域的重要研究问题。遥感卫星图像数据,尤其是高光谱等遥感图像数据的出现,将空间信息与光谱信息集成于同一数据集中,丰富了图像信息来源。如何准确地识别高光谱图像中的地物类别,已经成为了图像处理和模式识别领域的热点问题。面向高光谱图像数据提出了一种基于波段分组特征和形态学特征的高光谱图像分类方法,结合空间和光谱特征提高分类精度。通过真实的高光谱数据实验证明:利用波段分组可以有效地保持光谱特征,降低数据冗余;在波段分组基础上结合形态学特征进行分类,比传统分类方法的分类精度明显提高。  相似文献   

7.
From geological and planetary exploration perspectives, automated sub-pixel classification of hyperspectral data is the most difficult task as it involves blind unmixing with library spectra of minerals. In this study, we demonstrate a procedure involving spectral transformation and linear unmixing to achieve the above task. For this purpose, infrared spectra of rocks from the spectral library, field, and remotely sensed hyperspectral image cube were used. Potential spectra of minerals for unmixing rock spectra were drawn from the library based on similarity of absorption features measured using Pearson correlation coefficient. Eight transformation techniques namely, first derivative, fast Fourier transform, discrete wavelet transform, Hilbert–Huang transform, crude low pass filter, S-transform, binary encoding, spectral effective peak matching, and two sparsity-based techniques (orthogonal matching pursuit, sparse unmixing via variable splitting, and augmented Lagrangian) were evaluated. Subsequently, minerals identified by above techniques were unmixed by linear mixture model (LMM) to decipher mineralogical composition and abundance. Results of LMM achieved using fully constrained least-square-estimation-based quadratic programming optimization approach were evaluated by conventional procedures such as X-ray diffraction and microscopy. In the case of image cube, endmembers derived using minimum noise fraction and pixel purity index were subjected to above procedure. It is evident that the discrete-wavelet-transformation-based approach produced excellent and meaningful results due to its flexibility in scaling the data and capability to handle noisy spectra. It is interesting to note that the adopted procedure could perform sub-pixel classification of image cube automatically and identify predominance of dolomite in limestone and sodium in alunite based on subtle differences in absorption positions.  相似文献   

8.
This paper demonstrates a methodology for the analysis and integration of airborne hyperspectral sensor data (445–2543?nm) with GIS data in order to develop a vulnerability map which has the potential to assist in decision making during post-disaster emergency operations. Hailstorms pose a threat to people as well as property in Sydney, Australia. Emergency planning demands current, large-scale spatio-temporal information on urban areas that may be susceptible to hailstones. Several regions, dominated by less resistant roofing materials, have a higher vulnerability to hailstorm damage than others. Post-disaster operations must focus on allocating dynamic resources to these areas. Remote sensing data, particularly airborne hyperspectral sensor data, consist of spectral bands with narrow bandwidths, and have the potential to quantify and distinguish between urban features such as roofing materials and other man-made features. A spectral library of surface materials from urban areas was created by using a full range spectroradiometer. The image was atmospherically corrected using the empirical line method. A spectral angle mapper (SAM) method, which is an automated method for comparing image spectra to laboratory spectra, was used to develop a classification map that shows the distribution of roofing materials with different resistances to hailstones. Surface truthing yielded high percentage accuracy. Spatial overlay technique was performed in a GIS environment where several types of cartographic data such as special hazard locations, population density, data about less mobile people and the street network were overlaid on the classified geo-referenced hyperspectral image. The integrated database product, which merges high quality spectral information and cartographic GIS data, has vast potential to assist emergency organizations, city planners and decision makers in formulating plans and strategies for resource management.  相似文献   

9.
We present a study on predicting the concentration level of synthetic astaxanthin in fish feed pellet coating using multi- and hyperspectral image analysis. This was done in parallel using two different vision systems. A new instrument for hyperspectral imaging, the SuperK setup, using a super-continuum laser as the light source was introduced. Furthermore, a parallel study with the commercially available multispectral VideometerLab imaging system was performed. The SuperK setup used 113 spectral bands (455–1,015 nm), and the VideometerLab used 20 spectral bands (385–1,050 nm). To predict the astaxanthin concentration from the spectral image data, the synthetic astaxanthin content in the pellets was measured with the established standard technique; high-pressure liquid chromatography (HPLC). Regression analysis was done using partial least squares regression (PLSR) and the sparse regression method elastic net (EN). The ratio of standard error of prediction (RPD) is the ratio between the standard deviation of the reference values and the prediction error, and for both PLSR and EN both devices gave RPD values between 4 and 24, and with mean prediction error of 1.4–8.0 parts per million of astaxanthin concentration. The results show that it is possible to predict the synthetic astaxanthin concentration in the coating well enough for quality control using both multi- and hyperspectral image analysis, while the SuperK setup performs with higher accuracy than the VideometerLab device for this particular problem. The spectral resolution made it possible to identify the most significant spectral regions for detection of astaxanthin. The results also imply that the presented methods can be used in general for quality inspection of various coating substances using similar coating methods.  相似文献   

10.
通过将快照编码孔径光谱成像和普通RGB彩色成像结合,双相机光谱成像系统能够高效地获取场景的光谱信息,具有广阔的应用前景.如何高质量地从压缩采样中重建高光谱图像是该系统需要解决的重要问题.根据高光谱图像与彩色图像在空间结构和光谱响应上的相关性,本文了提出一种基于颜色自适应字典的重建算法,用以提高双相机光谱成像系统的重建质量.首先,利用RGB观测分别训练三通道非负字典.然后,以彩色相机的光谱响应曲线为指导,为每一个谱带选择光谱相关性最大的字典.最后,完成高光谱图像的稀疏重建.高光谱数据库和遥感数据库的仿真结果均表明,本文提出的算法能够大幅度提升双相机光谱成像系统的重建质量.  相似文献   

11.
Hyperspectral imaging sensors have been introduced for measuring the health status of plants. Recently, they also have been used for close-range sensing of plant canopies with a highly complex architecture. However, the complex geometry of plants and their interaction with the illumination setting severely affect the spectral information obtained. Furthermore, the spatial component of analysis results gain in importance as higher plants are represented by multiple plant organs as leaves, stems and seed pods. The combination of hyperspectral images and 3D point clouds is a promising approach to face these problems. We present the generation and application of hyperspectral 3D plant models as a new, interesting application field for computer vision with a variety of challenging tasks. We sum up a geometric calibration method for hyperspectral pushbroom cameras using a reference object for the combination of spectral and spatial information. Furthermore, we show exemplarily new calibration and analysis methods enabled by the hyperspectral 3D models in an experiment with sugar beet plants. An improved normalization, a comparison of image and 3D analysis and the density estimation of infected surface points underline some of the new capabilities gained using this new data type. Based on such hyperspectral 3D models the effects of plant geometry and sensor configuration can be quantified and modeled. In future, reflectance models can be used to remove or weaken the geometry-related effects in hyperspectral images and, therefore, have the potential to improve automated plant phenotyping significantly.  相似文献   

12.
基于CASI影像的黑河中游种植结构精细分类研究   总被引:1,自引:1,他引:0  
基于CASI高光谱影像资料,计算出NDVI和纹理数据并综合进行SVM(Support Vector Machine)分类,3种信息的组合形成4种分类方案,是为了探讨CASI数据在种植结构精细分类中的应用潜力,为定量研究和监测提供数据基础。数据在分类前利用同步ASD数据和CE\|318数据进行了辐射定标和大气校正。分类结果与地面实际调查数据对比验证结果表明:① 4种分类结果均与地面实际调查情况基本一致,并分别取得了96.78%、97.21%、88.00%、88.38% 的分类精度和0.9676、0.9691、0.8674、0.8716的Kappa系数;② CASI数据信息丰富,在植被的精细分类方面具有很大的应用潜力;③ 结合空间特征信息和NDVI数据可以有效地提高分类精度。  相似文献   

13.
高光谱图象处理分析系统HIPAS的系统设计及实现   总被引:1,自引:0,他引:1       下载免费PDF全文
描述了高光谱图象处理与分析系统软件的系统设计,体系结构和主要特点,阐述了高光谱图象处理系统应具备的功能以及面向对象的设计方法在软件系统设计中的应用。实验表明,采用面向对象的设计方法和新一代的编程文3,可以快速开发出性能满足高光谱图象处理。  相似文献   

14.
Exotic plant invasion is a major environmental and ecological concern and is a particular issue for Mediterranean-type ecosystems. Early detection of invasive plants is crucial for effective weed management. Several studies have explored hyperspectral imagery for mapping invasive plants with promising results. However, only a few extensive or comparative studies about image processing techniques for invasive plant detection have been reported, and even fewer studies have involved very high spatial and spectral resolution imagery. The primary goal of this study was to investigate the utility of very high spatial (0.5 m) and spectral (4 nm) resolution imagery and several classification approaches for detecting tamarisk (Tamarix spp.) infestations, the most problematic invasive plant species in the riparian habitats of southern California.Hierarchical clustering was a particularly effective and efficient statistical method for identifying wavebands and spectral transforms having the greatest discriminatory power. Products resulting from the classification of airborne hyperspectral image data varied by scene, input data type, classifier, and minimum patch size. Overall accuracy of image classification accuracy of products co-varied with commission error rates, such that products having strong agreement with reference data also had a high number of false detections. Integrating the findings from qualitative map analysis, areal proportion statistics, and object-based accuracy assessment indicates that the parallelepiped classifier with several narrow wavebands selected through hierarchical clustering yielded the most accurate and reliable tamarisk classification products.  相似文献   

15.
Hyperspectral imaging can be a useful remote-sensing technology for classifying tree species. Prior to the image classification stage, effective mapping endeavours must first identify the optimal spectral and spatial resolutions for discriminating the species of interest. Such a procedure may contribute to improving the classification accuracy, as well as the image acquisition planning. In this work, we address the effect of degrading the original bandwidth and pixel size of a hyperspectral and hyperspatial image for the classification of Sclerophyll forest tree species. A HySpex-VNIR 1600 airborne-based hyperspectral image with submetric spatial resolution was acquired in December 2009 for a native forest located in the foothills of the Andes of central Chile. The main tree species of this forest were then sampled in the field between January and February 2010. The original image spectral and spatial resolutions (160 bands with a width of 3.7 nm and pixel sizes of 0.3 m) were systematically degraded by resampling using a Gaussian model and a nearest neighbour method, respectively (until reaching 39 bands with a width of 14.8 nm and pixel sizes of 2.4 m). As a result, 12 images with different spectral and spatial resolution combinations were created. Subsequently, these images were noise-reduced using the minimum noise fraction procedure and 12 additional images were created. Statistical class separabilities from the spectral divergence measure and an assessment of classification accuracy of two supervised hyperspectral classifiers (spectral angle mapper (SAM) and spectral information divergence (SID)) were applied for each of the 24 images. The best overall and per-class classification accuracies (>80%) were observed when the SAM classifier was applied on the noise-reduced reflectance image at its original spectral and spatial resolutions. This result indicates that pixels somewhat smaller than the tree canopy diameters were the most appropriate to represent the spatial variability of the tree species of interest. On the other hand, it suggests that noise-reduced bands derived from the full image spectral resolution rendered the best discrimination of the spectral properties of the tree species of interest. Meanwhile, the better performance of SAM over SID may result from the ability of the former to classify tree species regardless of the illumination differences in the image. This technical approach can be particularly useful in native forest environments, where the irregular surface of the uppermost canopy is subject to a differentiated illumination.  相似文献   

16.
The fusion of hyperspectral image and panchromatic image is an effective process to obtain an image with both high spatial and spectral resolutions. However, the spectral property stored in the original hyperspectral image is often distorted when using the class of traditional fusion techniques. Therefore, in this paper, we show how explicitly incorporating the notion of “spectra preservation” to improve the spectral resolution of the fused image. First, a new fusion model, spectral preservation based on nonnegative matrix factorization (SPNMF), is developed. Additionally, a multiplicative algorithm aiming at get the numerical solution of the proposed model is presented. Finally, experiments using synthetic and real data demonstrate the SPNMF is a superior fusion technique for it could improve the spatial resolutions of hyperspectral images with their spectral properties reliably preserved.  相似文献   

17.
Hyperspectral remote sensing data with bandwidth of nanometre (nm) level have tens or even several hundreds of channels and contain abundant spectral information. Different channels have their own properties and show the spectral characteristics of various objects in image. Rational feature selection from the varieties of channels is very important for effective analysis and information extraction of hyperspectral data. This paper, taking Shunyi region of Beijing as a study area, comprehensively analysed the spectral characteristics of hyperspectral data. On the basis of analysing the information quantity of bands, correlation between different bands, spectral absorption characteristics of objects and object separability in bands, a fundamental method of optimum band selection and feature extraction from hyperspectral remote sensing data was proposed.  相似文献   

18.
基于线性混合模型的高光谱图像端元提取   总被引:16,自引:0,他引:16  
近年来,基于线性混合模型的光谱解混合技术正在越来越广泛地用在光谱数据分析和遥感地物量化中,这项技术的关键就在于确定端元(Endmember)光谱。通常,端元的荻取有两种方式:来源于光谱库以及来源于图像数据,相比之下后者得到的结果更能体现真实的地面信息。为此,从线性混合模型的特点出发,归纳了目前几种比较成熟的端元提取算法,分析了它们的主要思想和存在的优缺点,并总结了评估算法结果的依据,最后介绍了端元提取技术的发展趋势。  相似文献   

19.
A number of clear issues are pertinent when considering whether, or not, to use a remotely sensed dataset. We evaluate these issues here by comparing an aerial hyperspectral image at 1.5 m geometric resolution that comprises 128 narrow bands within a spectral range between 400 nm and 1,000 nm as well as a nine-band Landsat 8 image at 30.0 m geometric resolution. We therefore applied Random Forest (RF) and Support Vector Machine (SVM) classifiers utilizing different input data sets to determine the best thematic accuracy for both types of images by involving all possible bands and then minimized them using variable selection and dimension reduction via Minimum Noise Fraction (MNF). We then compared Landsat images to an aerial hyperspectral one. The results of this analysis revealed that band selections based on variable importance and MNF-transformation improved thematic accuracy assessed as Overall Accuracy (OA). Results reveal a 1.00% improvement in OA via variable selection as 59 bands instead of 128 bands and a 1.50% via MNF-transformation of the hyperspectral image. This improvement was 4.52% in the Landsat image when using a MNF-transformation compared to the best performances without transformation or variable selection. Data also showed that application of Landsat spectral range on hyperspectral bands resulted in different outcomes; specifically, SVM resulted in a 91.50% OA while RF resulted in 95.50% OA. Landscape ecology results show that use of the Landsat image provided fewer land cover patches and that differences encompassed 6.30% of the whole area. We therefore conclude that Landsat data can be used with a number of limitations for accurate ecological mapping.  相似文献   

20.
Nutrient enrichment and eutrophication are major concerns in many estuarine and wetland ecosystems, and the need is urgent for fast, efficient, and synoptic ways to detect and monitor nutrients in wetlands and other coastal systems across multiple spatial and temporal scales. We integrated three approaches in a multi-disciplinary evaluation of the potential for using hyperspectral imaging as a tool to assess nutrient enrichment and vegetation responses in tidal wetlands. For hyperspectral imaging to be an effective tool, spectral signatures must vary in ways correlated with water nutrient content either directly, or indirectly via such proxies as vegetation responses to elevated nitrogen. Working in Elkhorn Slough, central California, where intensive farming practices generate considerable runoff of fertilizers and pesticides, we looked first for long- and short-term trends among temporally ephemeral point data for nutrients and other water quality characters collected monthly at 18 water sampling stations since 1988. Second, we assessed responses of the dominant wetland plant, Salicornia virginica (common pickleweed) to two fertilizer regimes in 0.25 m2 experimental plots, and measured changes in tissue composition (C, H, N), biomass, and spectral responses at leaf and at canopy scales. Third, we used HyMap hyperspectral imagery (126 bands; 15–19 nm spectral resolution; 2.5 m spatial resolution) for a synoptic assessment of the entire wetland ecosystem of Elkhorn Slough. We mapped monospecific Salicornia patches (~ 56–500 m2) on the ground adjacent to the 18 regular water sampling sites, and then located these patches in the hyperspectral imagery to correlate long-term responses of larger patches to water nutrient regimes. These were used as standards for correlating plant canopy spectral responses with nitrogen variation described by the water sampling program. There were consistent positive relationships between nitrogen levels and plant responses in both the field experiment and the landscape analyses. Two spectral indices, the Photochemical Reflectance Index (PRI) and Derivative Chlorophyll Index (DCI), were correlated significantly with water nutrients. We conclude that hyperspectral imagery can be used to detect nutrient enrichment across three spatial and at least two temporal scales, and suggest that more quantitative information could be extracted with further research and a greater understanding of physiological and physical mechanisms linking water chemistry, plant properties and spectral imaging characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号