首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This article presents for the first time the combination of dual-polarimetric C-band Sentinel-1 synthetic aperture radar (SAR) data and quad-polarimetric L-band ALOS-2/PALSAR-2 imagery for mapping of flooded areas with a special focus on flooded vegetation. L-band SAR data is well suited for mapping of flooded vegetation, while C-band enables an accurate extraction open water areas. Polarimetric decomposition-based unsupervised Wishart classification is combined with object-based post-classification refinement and the integration of spatial contextual information and global auxiliary data. In eight different scenarios, focusing on single datasets or fusion of classification results of several ones, respectively, different polarimetric decomposition and classification principles, including the entropy/anisotropy/alpha and the Freeman–Durden–Wishart classification, were investigated. The helix scattering component of the Yamaguchi decomposition, derived from ALOS-2 imagery, showed high suitability to refine the Sentinel-1-based detection of flooded vegetation. A test site at the Evros River (Greek/Turkish border region) was chosen, which was affected by a flooding event that occurred in spring 2015. The validation was based on high spatial resolution optical WorldView-2 imagery acquired with short temporal delay to the SAR data.  相似文献   

2.
Abstract

Synthetic aperture radar remote sensing is a promising tool for detection of flooding on forested floodplains. The bright appearance of flooded forests on radar images results from double-bounce reflections between smooth water surfaces and tree trunks or branches. Enhanced back scattering at L-band has been shown to occur in a wide variety of forest types, including cypress-tupelo swamps, temperate bottomland hardwoods, spruce bogs, mangroves and tropical floodplain forests. Lack of enhancement is a function of both stand density and branching structure. According to models and measurements, the magnitude of the enhancement is about 3 to 10 dB. Steep incidence angles (20°-30°) are optimal for detection of flooding, since some forest types exhibit bright returns only at steeper angles. P-band should prove useful for floodwater mapping in dense stands, and multifrequency polarimetric analysis should allow flooded forests to be distinguished from marshes.  相似文献   

3.
This paper presents the use of time series of SAR images to map the flood temporal dynamics and the spatial distribution of vegetation over a large Amazonian floodplain. The region under study (3500 km2) presents a diversity of landscape units with open lakes, bogs, large meadows, savannahs, alluvial forests and terra firma forest, covered by 21 images acquired by J-ERS between 1993 and 1997. Ground data include in situ observations of vegetation structure and flood extent as well as water level records. Image analysis demonstrates that temporal variations of the radar backscatter can be used to monitor efficiently the flood extent regardless of the landscape units. Also, analysis of the backscatter temporal variation greatly reduces the confusion between smooth surfaces (e.g. open water bodies, bare soils) inherent to L-band backscatter. The mapping method is based on decision rules over two decision variables: 1) the mean backscatter coefficient computed over the whole time series; 2) the total change computed using an “Absolute Change” estimator. The first variable provides classification into rough vegetation types while the second variable yields a direct estimate of the intensity of change that is related to flood dynamics. The classifier is first applied to the whole time series to map the maximum and minimum flood extent by defining 3 flood conditions: never flooded (NF); occasionally flooded (OF); permanently flooded (PF). It also furnishes the broad land cover type: open water/bare soils/low vegetation/forest. The accuracy of the flood extent mapping shows a kappa value of 0.82. Then, the classifier is run iteratively on the OF pixels to monitor flood stages during which the occasionally flooded areas get submerged. The mapping accuracy is assessed on one intermediate flood stage, showing a precision in excess of 90%. The importance of the time sampling for flood mapping is discussed along with the influence of SAR backscatter accuracy and the number of images. Then general guidelines for floodplain mapping are presented. By combining water level reports with maps of different flood stages the flooding pattern can be retrieved along with the vegetation succession processes. It is shown that the spatial distribution of vegetation communities is governed by flood stress and can be modelled as a function of the mean annual exposure to floods.  相似文献   

4.
以扎龙自然保护区湿地为例,结合ENVISat ASAR多极化(HH/HV)雷达影像与传统的光学影像Landsat TM (band1~5,7),分析雷达影像后向散射系数与Landsat TM影像不同波段反射率在淹水植被、非淹水植被、明水面和裸土不同地表覆被类型的差异。选择训练样本,采用分类回归树(Classification and Regression Tree,CART)模型,分别对两种影像进行分类,可视化表达湿地植被淹水范围空间分布情况。基于实测的植被冠层下淹水范围与非淹水范围样本点对两种数据源的分类结果进行精度验证。结果表明:HH/HV极化影像中,植被覆盖下水体的后向散射系数与其他地表覆被类型有明显区别,分类结果总精度为79.49%,Kappa系数为0.70,湿地植被淹水范围提取精度较高。而TM影像分类结果中,由于部分地区植被覆盖水体,淹水植被分类误差较高。将雷达影像引入沼泽湿地研究,提高了植被淹水范围提取效果,为有效分析湿地生态水文过程提供基础,对湿地水资源合理利用及生物多样性保护具有重要意义。  相似文献   

5.
多时机NOAA—AVHRR数据主成分分析的生物学意义   总被引:3,自引:0,他引:3       下载免费PDF全文
利用多时上NOAA-AVHRR的中国归一化植被指数NDVI数据进行主成分分析,并与从NDVI派生的4个生物不数作相关分析,结果表明:主成分变换既压缩了信息,将21个月的信息主要压缩到前4个主分量,又提取了关键的变化信息,第一主分量反映基本植被覆信息,第二、第三和第四主分量反映植被季相变化信息,正是由于一年12个月的NDVI曲线反映了植被季相变化特征,使得主成分变换得到的各主分量具有一定的生物学意义,而且17种中国典型植被在这4个主分量图像上存在一定的差异性,使其具有进行较高精度土地覆盖分类的潜力。  相似文献   

6.
Rift Valley Fever (RVF) is a mosquito-borne virus that affects livestock and humans in Africa. Landsat Thematic Mapper (TM) data are shown to be effective in identifying dambos, intermittently flooded areas that are potential mosquito breeding sites, in an area north of Nairobi, Kenya. Positive results were obtained from a limited test of flood detection in dambos with airborne high resolution L, C, and X band multipolarization synthetic aperture radar (SAR) imagery. L and C bands were effective in detecting flooded dambos, but LHH was by far the best channel for discrimination (p < 0.01) between flooded and nonflooded sites in both sedge and short grass environments. This study demonstrates the feasibility of a combined passive and active remote sensing program for monitoring the location and condition of RVF vector habitats, thus making future control of the disease more promising.  相似文献   

7.
Many parts of the world experience severe episodes of flooding every year. In addition to the high cost of mitigation and damage to property, floods make roads impassable and hamper community evacuation, movement of goods and services, and rescue missions. Knowing the depth of floodwater is critical to the success of response and recovery operations that follow. However, flood mapping especially in urban areas using traditional methods such as remote sensing and digital elevation models (DEMs) yields large errors due to reshaped surface topography and microtopographic variations combined with vegetation bias. This paper presents a deep neural network approach to detect submerged stop signs in photos taken from flooded roads and intersections, coupled with Canny edge detection and probabilistic Hough transform to calculate pole length and estimate floodwater depth. Additionally, a tilt correction technique is implemented to address the problem of sideways tilt in visual analysis of submerged stop signs. An in-house dataset, named BluPix 2020.1 consisting of paired web-mined photos of submerged stop signs across 10 FEMA regions (for U.S. locations) and Canada is used to evaluate the models. Overall, pole length is estimated with an RMSE of 17.43 and 8.61 in. in pre- and post-flood photos, respectively, leading to a mean absolute error of 12.63 in. in floodwater depth estimation. Findings of this research are sought to equip jurisdictions, local governments, and citizens in flood-prone regions with a simple, reliable, and scalable solution that can provide (near-) real time estimation of floodwater depth in their surroundings.  相似文献   

8.
The aim of this study is to explore the performances of different data fusion techniques for the enhancement of urban features and evaluate the features obtained by the fusion techniques in terms of separation of urban land cover classes when multisource images are under consideration. For the data fusion, multiplicative method, Brovey transform, principal component analysis (PCA), Gram–Schmidt fusion, wavelet-based fusion and Elhers fusion are used and the results are compared. Of these methods, the best result is obtained by the use of the optical/synthetic aperture radar (SAR) wavelet-based fusion. The classification methods of multisource images, statistical maximum likelihood classification (MLC) and the knowledge-based method are used and the results are compared. The knowledge-based method is based on a hierarchical rule-based approach and it uses a hierarchy of rules describing different conditions under which the actual classification has to be performed. Overall, the research indicates that multisource information can significantly improve the interpretation and classification of land-cover types and the knowledge-based method is a powerful tool in the production of a reliable land-cover map.  相似文献   

9.
Numerous land-cover change detection techniques have been developed with varying opinions about their appropriateness and success. Decisions on the selection of the most suitable change detection method is often influenced by the study region landscape complexity and the type of data used for analysis. For different climatic areas, the method that suits best the seasonal land-cover change identification remains uncertain. In this study, 11 different binary change detection methods were tested and compared with respect to their capability in detecting land-cover change/no-change information in different seasons. The methods include image differencing (I_Diff), Improved image differencing (Imp_Diff), principal component image differencing (PC_Diff), vegetation index differencing (VI_Diff), change vector analysis (CVA), image ratioing (IR), improved image ratioing (Imp_IR), vegetation index image ratioing (VI_R), multi-date principal component analysis (PCA) using all bands (M_PCA), two-date bands PCA (B_PCA), and two-date vegetation index images PCA (VI_PCA). Multi-Date Thematic Mapper (TM) data were used for a wide set of change image generation. A relatively new approach was applied for optimal threshold value determination for the separation of change/no-change areas. Research results indicated that any methods involving TM Band 4 performed better than those using TM Band 3 or 5 on each of the change periods. However, irrespective of the method used, the accuracy assessment and change/no-change validation results from normalized difference vegetation index (NDVI)-based techniques outperformed all other tested techniques in the change detection process (overall accuracy >90% and kappa value >0.85 for all six change periods). The image differencing technique was found to be marginally better than PCA and IR in most cases and any of these techniques can be used for change detection. However, because of the simplistic nature and relative ease in identifying both negative and positive changes from difference images, the NDVI differencing technique is recommended for seasonal land-cover change identification in the study region.  相似文献   

10.
The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study investigates the feasibility of using Radarsat‐1 SAR imagery to detect flooded areas in coastal Louisiana after Hurricane Lili, October 2002. Arithmetic differencing and multi‐temporal enhancement techniques were employed to detect flooding and to investigate relationships between backscatter and water level changes. Strong positive correlations (R 2 = 0.7–0.94) were observed between water level and SAR backscatter within marsh areas proximate to Atchafalaya Bay. Although variations in elevation and vegetation type did influence and complicate the radar signature at individual sites, multi‐date differences in backscatter largely reflected the patterns of flooding within large marsh areas. Preliminary analyses show that SAR imagery was not useful in mapping urban flooding in New Orleans after Hurricane Katrina's landfall on 29 August 2005.  相似文献   

11.
12.
We evaluated the performance of airborne HyperSpecTIR (HST) images for detecting and classifying the invasive riparian vegetation saltcedar along the Muddy River in Clark County, Nevada. HyperSpecTIR image reflectance spectra (227 bands, 450–2450 nm) were acquired for the following four vegetation covers: invasive saltcedar, native honey mesquite, grassland patches and crops. We compared five feature reduction approaches: band selection based on Jeffreys–Matusita distance, principal component analysis (PCA), minimum noise fraction (MNF), segmented principal component transform (SPCT) and segmented minimum noise fraction (SMNF). In addition, maximum likelihood (ML) and two spectral angle mapper (SAM) classifiers were applied to all extracted bands or features. Classification accuracies were compared among all classification approaches. Although the overall accuracy of maximal likelihood classifiers generally surpassed that of SAM classifiers, the highest overall accuracy was achieved by a SMNF-SAM combination with adjusted angular thresholds for classes. We concluded that high spectral and spatial resolution imagery can be used to detect and classify invasive saltcedar in this arid area.  相似文献   

13.
基于Contourlet域主成分分析的SAR图像去噪   总被引:1,自引:0,他引:1  
相干斑噪声是合成孔径雷达图像所固有的,并且严重降低了图像的可编译性,影响了后续图像分割,特征提取,目标分类和识别等工作.因此,SAR图像的相干斑去除问题一直是SAR图像应用研究的重要问题之一.针对SAR图像噪声去除问题,提出了一种基于Contourlet多尺度分解域主成分分析的SAR图像去噪新方法,并且简要归纳了已有的SAR图像去噪方法.方法首先对源图像进行Contourlet分解,在不同频段的子带图像中,利用主成分分析方法进行能量保持,用重构图像来进行子带去噪,最后通过Contourlet逆变换得到去噪之后的图像.在SAR图像上的实验结果表明,方法不仅较好地保持了图像的纹理和细节特征,且信噪比也较高.  相似文献   

14.
Wetland extent was mapped for the central Amazon region, using mosaicked L-band synthetic aperture radar (SAR) imagery acquired by the Japanese Earth Resources Satellite-1. For the wetland portion of the 18×8° study area, dual-season radar mosaics were used to map inundation extent and vegetation under both low-water and high-water conditions at 100-m resolution, producing the first high-resolution wetlands map for the region. Thematic accuracy of the mapping was assessed using high-resolution digital videography acquired during two aerial surveys of the Brazilian Amazon. A polygon-based segmentation and clustering was used to delineate wetland extent with an accuracy of 95%. A pixel-based classifier was used to map wetland vegetation and flooding state based on backscattering coefficients of two-season class combinations. Producer's accuracy for flooded and nonflooded forest classes ranged from 78% to 91%, with lower accuracy (63-65%) for flooded herbaceous vegetation. Seventeen percent of the study quadrat was occupied by wetlands, which were 96% inundated at high water and 26% inundated at low water. Flooded forest constituted nearly 70% of the entire wetland area at high water, but there are large regional variations in the proportions of wetland habitats. The SAR-based mapping provides a basis for improved estimates of the contribution of wetlands to biogeochemical and hydrological processes in the Amazon basin, a key question in the Large-Scale Biosphere-Atmosphere Experiment in Amazônia.  相似文献   

15.
Data from 202 forest plots on the Roanoke River floodplain, North Carolina were used to assess the capabilities of multitemporal radar imagery for estimating biophysical characteristics of forested wetlands. The research was designed to determine the potential for using widely available data from the current set of satellite-borne synthetic aperture radar (SAR) sensors to study forests over broad geographic areas and complex environmental gradients. The SAR data set included 11 Radarsat scenes, 2 ERS-1 images, and 1 JERS-1 scene. Empirical analyses were stratified by flood status such that sites were compared only if they exhibited common flooding characteristics. In general, the results indicate that forest properties are more accurately estimated using data from flooded areas, probably because variations in surface conditions are minimized where there is a continuous surface of standing water. Estimations yielded root mean square errors (RMSEs) for validation data around 10 m2/ha for basal area (BA), and less than 3 m for canopy height. The r2 values generally exceeded .65 for BA, with the best predictions coming from sample sites for which both nonflooded and flooded SAR scenes were available. The addition of early spring normalized difference vegetation index (NDVI) values from Landsat Thematic Mapper (Landsat TM) improved model predictions for BA in forests where BA levels were <55 m2/ha. Further analyses indicated a very limited sensitivity of the individual SAR scenes to differences in forest composition, although soil properties in nonflooded areas exerted a weak but nevertheless important influence on backscatter.  相似文献   

16.
基于神经网络和数据融合的红树林群落分类研究   总被引:5,自引:0,他引:5  
刘凯  黎夏  王树功  刘万侠 《遥感信息》2006,(3):32-35,i0003
及时准确地掌握红树林群落现状信息可为保护和修复红树林生态系统提供重要的决策依据。对红树林群落进行遥感分类在实际应用中具有较大的意义。但红树林各群落间的光谱差异很微弱,有必要采用多源遥感数据融合的方法来提高分类的精度。本文以珠海淇澳岛红树林区为例,使用SAR图像与TM图像,探讨了监督分类、非监督分类以及神经网络分类3种分类方法和IHS融合、小波融合以及主成分融合3种融合方法对红树林群落进行分类的效果。结果表明,对SAR与TM主成分融合图像应用神经网络分类方法能够取得最好的分类效果。  相似文献   

17.
Satellite radar was used in a Florida Juncus roemerianusmarsh to map tidal flooding, a critical control of coastal vegetation distribution. Radar images taken during a time of near-continuous recordings of ground-based hydrology measurements directly linked marsh flooding to lowered radar returns and indicated a negative covariation between flood frequency and radar return. Flood-extent contours extracted from the radar images and calibrated with point depth measurements showed marsh elevation could be estimated to about 8 cm compared to the 150 cm topographic contours currently available.  相似文献   

18.
In Thailand, flooding due to seasonal monsoon conditions frequently destroys a substantial amount of rice production, the most important agricultural activity of the country. Taking the 2001 monsoon flooding that hit the Lower Chi River Basin as an example, we developed a new method for accurately assessing damage to flood‐affected paddies. A RADARSAT‐1 image acquired during peak flooding was combined with a 30‐m digital elevation model (DEM) to develop a ‘flood‐level‐determination’ algorithm for estimating floodwater depth. Based on the elongation capability of the rice varieties, a water depth of 80 cm was used to separate ‘non‐damaged’ from ‘damaged’ paddy areas, indicating that about 60% of the paddy fields in the flooded areas were non‐damaged paddies. To minimize the loss of rice and maximize farmers' incomes, a map of rice varieties appropriate for the damaged paddy areas was produced, combining the flood‐affected paddy map with the flood frequency map. Our results demonstrate the potential of using single‐date RADARSAT‐1 data and a DEM to provide accurate and economic means of assessing flood damage to rice fields that can be used to improve rice production.  相似文献   

19.
The number and intensity of flood events have been on the rise in many regions of the world. In some parts of the U.S., for example, almost all residential properties, transportation networks, and major infrastructure (e.g., hospitals, airports, power stations) are at risk of failure caused by floods. The vulnerability to flooding, particularly in coastal areas and among marginalized populations is expected to increase as the climate continues to change, thus necessitating more effective flood management practices that consider various data modalities and innovative approaches to monitor and communicate flood risk. Research points to the importance of reliable information about the movement of floodwater as a critical decision-making parameter in flood evacuation and emergency response. Existing flood mapping systems, however, rely on sparsely installed flood gauges that lack sufficient spatial granularity for precise characterization of flood risk in populated urban areas. In this paper, we introduce a floodwater depth estimation methodology that augments flood gauge data with user-contributed photos of flooded streets to reliably estimate the depth of floodwater and provide ad-hoc, risk-informed route optimization. The performance of the developed technique is evaluated in Houston, Texas, that experienced urban floods during the 2017 Hurricane Harvey. A subset of 20 user-contributed flood photos in combination with gauge readings taken at the same time is used to create a flood inundation map of the experiment area. Results show that augmenting flood gauge data with crowdsourced photos of flooded streets leads to shorter travel time and distance while avoiding flood-inundated areas.  相似文献   

20.
To build a consistent image representation model which can process the non-Gaussian distribution data, a novel edge detection method (KPCA-SCF) based on the kernel method is proposed. KPCA-SCF combines kernel principal component analysis and kernel subspace classification proposed in this paper to extract edge features. KPCA-SCF was tested and compared with linear PCA, nonlinear PCA and conventional methods such as Sobel, LOG, Canny, etc. Experiments on synthetic and real-world images show that KPCA-SCF is more robust under noisy conditions. KPCA-SCF's score of F-measure (0.44) ranks 11th in the Berkeley segmentation dataset and benchmark, it (0.54) ranks 10th tested on a noised image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号