首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The “kinetic wall” discussed in the First International Symposium in this series has been incorporated into a passive solar house that was built at Sede Boqer, Israel. The house has been lived in and monitored since October 1982. The present paper shows an analysis of the first winter's thermal performance figures of the rotating prism wall and compares it with some more conventional passive heating methods that are employed in the other rooms of the house.During the heating period from November 1st 1982 until March 31st 1983, the average ambient temperature at Sede Boqer was 10.5°C with a mean diurnal temperature swing of ±5.0°C. By contrast, the average air temperature in the room heated by the kinetic wall was 18.0°C with a mean diurnal temperature swing of magnitude less than ±1.0°C. No backup heating was necessary in this room.The rotating prism wall has proved to be easy to realize, convenient to live with and a remarkably effective space heating device.  相似文献   

2.
Two super-insulated houses were constructed near Sendai City in accordance with the Canadian R-2000 manual (Canadian Home Builders' Assoc., 1987). Shelter performance, thermal environment, air quality and energy consumption of these two houses were investigated for one year. The two super-insulated houses were very airtight compared with other houses. The one-year measurement of room temperature and humidity for one super-insulated house showed that the daily mean temperature for the dining-living room and the master bedroom was 15°C-20°C during the winter and 22°C-28°C during the summer. Absolute humidity for these rooms was less than 5 g/kg (DA) during the winter. The indoor environment of the two super-insulated houses during the heating season was more thermally comfortable, compared with that of ordinary houses in Japan. During the summer, the indoor temperature in these two houses was stable during the day and did not decrease at night even if the outdoor air temperature dropped. The CO2 concentration in these two houses was lower than that of other airtight houses due to continuous mechanical ventilation. The space heating energy consumption for one super-insulated house was less than that of ordinary houses in Tohoku District in which only the living-dining room was heated.  相似文献   

3.
The Saskatchewan Conservation House, a low-energy-consumption solar-heated residential structure, began operation in December 1977. Monitoring of the house began in January 1978. The house has been operated as a demonstration dwelling seven days a week, and consequently monitoring conditions have been less than ideal, with approximately 1,000 visitors per week passing through the house. Monitoring of the energy consumption of the dwelling indicates that the design objective — a heat loss rate of 81 Watts per degree Celsius temperature difference between outside and inside — has been met and improved upon. An average Regina house has a heat loss rate of approximately 250 Watts/°C. The system uses 17.8 m2 of vacuum tube collectors. As the system was not started until mid-December, 1977, it was not possible to provide 100% solar heating during this winter period. Approximately three Gigajoules of thermal energy can be stored in the 12,700-litre storage tank. Based on the measured performance of the house, a ‘space-heating requirement of 5.1 Gigajoules per year (4.8 million Btu) would be needed to heat the house under normal occupancy conditions. The system is designed to provide 100% of this space-heating requirement.  相似文献   

4.
Since May, 1978, a block of flats in Dortmund, Western Germany, has had heating and hot water supplied by an air-to-water heat pump driven by a gas engine. Capacity is 465 kW and the unit has been able to provided this service unaided by supplementary heating with external temperatures as low as — 12 °C. How the installation has performed in use, saving 50 per cent of primary energy compared with conventional methods, is explained here by technical officers of the Dortmund Public Works Department.  相似文献   

5.
This paper presents the experimental study of a solar-assisted ground-coupled heat pump system (SAGCHPS) with solar seasonal thermal storage installed in a detached house in Harbin. The solar seasonal thermal storage was conducted throughout the non-heating seasons. In summer, the soil was used as the heat sink to cool the building directly. In winter, the solar energy was used as a priority, and the building was heated by a ground-coupled heat pump (GCHP) and solar collectors alternately. The results show that the system can meet the heating-cooling energy needs of the building. In the heating mode, the heat directly supplied by solar collectors accounted for 49.7% of the total heating output, and the average coefficient of performance (COP) of the heat pump and the system were 4.29 and 6.55, respectively. In the cooling mode, the COP of the system reached 21.35, as the heat pump was not necessary to be started. After a year of operation, the heat extracted from the soil by the heat pump accounted for 75.5% of the heat stored by solar seasonal thermal storage. The excess heat raised the soil temperature to a higher level, which was favorable for increasing the COP of the heat pump.  相似文献   

6.
This paper proposes a novel indirect-expansion solar-assisted multifunctional heat pump (IX-SAMHP) which integrates a domestic heat pump with a solar water heater. The IX-SAMHP can not only work in operation modes included in the two household appliances, but also operate in four new energy-saving operation modes for the space cooling, space heating and water heating. All operation modes have functioned successfully and can be switched to each other smoothly on a purpose-built experimental setup. Experiments of the heat pump water heating mode at outdoor air temperatures of 8 °C and 15 °C and the solar-assisted space heating mode at indoor air temperatures of 20 °C have been investigated in detail. Electric heaters were used to simulate solar radiation intensity in different weather conditions. The experimental results show that the IX-SAMHP can produce hot water with much less electric consumption in cloudy days compared with a solar water heater and can operate in much higher coefficient of performance than a domestic heat pump in cold winter. The IX-SAMHP is especially suitable for the regions abundant in solar radiation where the space heating, space cooling and water heating are required all the year round.  相似文献   

7.
This study was conducted with the aim to assess the potential performance of a photovoltaic thermal mechanical ventilation heat recovery (PV/T MVHR) system. The device is currently considered for the application to the Z-en house project undertaken by Scottish homebuilder. The house’s whole energy demand was calibrated based on the UK Government’s standard assessment procedure for energy rating of dwellings, while the PV/T performance was estimated using an ‘EESLISM’ energy and environmental design simulation tool developed by Kogakuin University. This study concluded that PV generates heat, which makes the fresh air running under the PV roof 10–15?°C warmer than the outside temperature even during the Scottish winter and this warm air extracted from roof-integrated PV modules can be used to help reduce the domestic space-heating demand. Thus, the building-integrated PV/T MVHR system was considered as one of the effective means to assist the net zero energy operation of housing in cool and cold climates, whose dominant domestic energy comsumption derives from space heating.  相似文献   

8.
In this study, we analyze the impact of ventilation heat recovery (VHR) on the operation primary energy use in residential buildings. We calculate the operation primary energy use of a case-study apartment building built to conventional and passive house standard, both with and without VHR, and using different end-use heating systems including electric resistance heating, bedrock heat pump and district heating based on combined heat and power (CHP) production. VHR increases the electrical energy used for ventilation and reduces the heat energy used for space heating. Significantly greater primary energy savings is achieved when VHR is used in resistance heated buildings than in district heated buildings. For district heated buildings the primary energy savings are small. VHR systems can give substantial final energy reduction, but the primary energy benefit depends strongly on the type of heat supply system, and also on the amount of electricity used for VHR and the airtightness of buildings. This study shows the importance of considering the interactions between heat supply systems and VHR systems to reduce primary energy use in buildings.  相似文献   

9.
《Building and Environment》2005,40(8):1040-1050
This study investigates the performance characteristics of a solar-assisted ground-source (geothermal) heat pump system (SAGSHPS) for greenhouse heating with a 50 m vertical 32 mm nominal diameter U-bend ground heat-exchanger. This system was designed and installed in the Solar Energy Institute, Ege University, Izmir (568 degree days cooling, base: 22 °C, 1226 degree days heating, base: 18 °C), Turkey. Based upon the measurements made in the heating mode from the 20th of January till 31st of March 2004, the heat extraction rate from the soil is found to be, on average, 57.78 W/m of bore depth, while the required borehole length in metre per kW of capacity is obtained as 11.92. Design practices in Turkey normally call for U-bend depths between 11 and 13 m/kW of heating. The entering water temperature to the unit ranges from 8.2 to 16.2 °C, with an average value of 14 °C. The greenhouse air has a maximum day temperature of 31.05 °C and night temperature of 14.54 °C with a relative humidity of 40.35%. The heating coefficient of performance of the heat pump (COPHP) is about 2.00 at the end of a cloudy day, while it is about 3.13 at the end of sunny day and fluctuates between these values in other times. The COP values for the whole system are also obtained to be 5–20% lower than COPHP. The clearness index during experimental period is computed as average 0.56. At the same period, Cucumus sativus cv. pandora F1 was raised, and product quality was improved with the climatic conditions in the designed SAGSHPS. However, experimental results show that monovalent central heating operation (independent of any other heating system) cannot meet the overall heat loss of the greenhouse if the ambient temperature is very low. The bivalent operation (combined with other heating system) can be suggested as the best solution in Mediterranean and Aegean regions of Turkey.  相似文献   

10.
This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 °C decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.  相似文献   

11.
A heating system is described for a one-family house in Trento, Italy, using solar collectors with buried long-term storage water tanks, made of reinforced concrete and internally water-proofed, assisted by an electrical water—water type heat pump.

The following design parameters are described and evaluated:

a. the annual energy requirement for the house;

b. the solar energy available;

c. the average monthly efficiency of the collectors;

d. the storage tank—ground heat flows, taking storage insulation, water storage temperature and COP to be variable with time;

e. the overall energy balance of the system for the house in question.

The conclusion is that the proposed system can cover the annual energy required for this house with an electrical consumption equal to 20% of the total.  相似文献   

12.
The household energy end-use project (HEEP) has collected energy and temperature data from a randomly selected, nationally representative sample of about 400 houses throughout New Zealand. This database has been used to explore the drivers of indoor temperatures and heating energy. Initial analysis of the winter living room temperatures shows that heating type, climate and house age are the key drivers. On average, houses heated by solid fuel are the warmest, with houses heated by portable LPG and electric heaters the coldest. Over the three winter months, living rooms are below 20 °C for 83% of the time—and the living room is typically the warmest room. Central heating is in only 5% of houses. Solid fuel is the dominant heating fuel in houses. The lack of air conditioning means that summer temperatures are affected by passive influences (e.g. house design, construction). Summer temperatures are strongly influenced by the house age and the local climate—together these variables explain 69% of the variation in daytime (9 a.m. to 5 p.m.) living room temperatures. In both summer and winter newer (post-1978) houses are warmer—this is beneficial in winter, but the high temperatures in summer are potentially uncomfortable.  相似文献   

13.
The thermal performance of a passive solar house in Ireland having high energy conservation standards is compared with that of a similar sized conventional dwelling house. In both cases the performance over a meteorological Test Reference Year is assessed using climatically responsive models developed experimentally which predict their internal temperature without heating.

The results indicate that the conventional house required over three times as much auxiliary heating as the passive solar house. Solar gain accounted for over half the gross heat demand in the solar house compared to 13% in the bungalow. An added advantage of the increased utilization of solar gain was the estimated reduction in the heating season from nine to six months.  相似文献   

14.
In this study we analyze the life cycle primary energy use of a wood-frame apartment building designed to meet the current Swedish building code, the Swedish building code of 1994 or the passive house standard, and heated with district heat or electric resistance heating. The analysis includes the primary energy use during the production, operation and end-of-life phases. We find that an electric heated building built to the current building code has greater life cycle primary energy use relative to a district heated building, although the standard for electric heating is more stringent. Also, the primary energy use for an electric heated building constructed to meet the passive house standard is substantially higher than for a district heated building built to the Swedish building code of 1994. The primary energy for material production constitutes 5% of the primary energy for production and space heating and ventilation of an electric heated building built to meet the 1994 code. The share of production energy increases as the energy-efficiency standard of the building improves and when efficient energy supply is used, and reaches 30% for a district heated passive house. This study shows the significance of a life cycle primary energy perspective and the choice of heating system in reducing energy use in the built environment.  相似文献   

15.
The study suggests improvements in the design of new houses to conserve energy and enhance indoor thermal comfort. Summer temperature records show that a new house has an average indoor temperature of 35°C with the ambient average 31°C. The traditional house in the old city recorded 28°C for the same period. Winter temperatures in both types of houses were similar (12°C) when not occupied. Architectural features of the two houses were compared to identify those responsible for difference in the thermal performance. Larger exposed surface and window areas, higher overall heat transfer coefficient and weaker thermal coupling with the ground for the new houses seems to contribute to their inferior thermal performance.  相似文献   

16.
张灿  常茹  吕建 《煤气与热力》2012,32(10):1-4
理论分析地埋管地源热泵相比空气源热泵的节能率。结合工程实例,对地埋管地源热泵地埋管换热器进出水温度、冷凝器进出水温度、热泵机组日能效比、供暖期能效比进行了实测计算。在测试期,地埋管换热器进出水温度、冷凝器进出水温度均在正常范围内波动。日能效比基本不随室外温度的变化而波动,说明热泵机组的制热性能比较稳定。供暖期能效比为3.05,说明该项目地源热泵的制热性能比较理想。  相似文献   

17.
A traditional Chinese heating system, the Chinese Kang, is used by 175 million people in detached houses in the rural regions of China, especially in Northeast China. This system utilizes biomass such as corn stalks, straw, corncob and energy plants as the heat sources. The objective of this paper is to establish a set of models to simulate the energy performance of the Kang heating system in one Chinese detached house. An experimental field study was carried out to collect practical parameters in a newly constructed Chinese detached house. The dynamic performance of the Kang heating system was simulated by using IDA-ICE 4.0 embedded with an empirical model built in the field study. The results show that the simulation can obtain good overall agreement with the field measurement results. It was confirmed that the Kang model created by IDA-ICE 4.0 is capable of simulating the performance of the Kang system and of calculating energy consumption in the detached house. Moreover, the result reveals that the thermal environment in the present Chinese detached house is still poor during the severe cold season if only the Kang system is used to heat the whole house.  相似文献   

18.
《Energy and Buildings》2005,37(1):101-110
Ground-source heat pumps (GSHPs), also known as geothermal heat pumps (GHPs), are recognized to be outstanding heating, cooling and water heating systems, and have been used since 1998 in the Turkish market. Greenhouses also have important economical potential in Turkey’s agricultural sector. In addition to solar energy gain, greenhouses should be heated during nights and cold days. In order to establish optimum growth conditions in greenhouses, renewable energy sources should be utilized as much as possible. It is expected that effective use of heat pumps with a suitable technology in the modern greenhouses will play a leading role in Turkey in the foreseeable future.The main objective of the present study is to investigate to the performance characteristics of a solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 1 × 1/4 in. nominal diameter U-bend ground heat exchanger using exergy analysis method. This system was designed and constructed in Solar Energy Institute of Ege University, Izmir, Turkey. The exergy transports between the components and the destructions in each of the components of the SAGSHPGHS are determined for the average measured parameters obtained from the experimental results. Exergetic efficiencies of the system components are determined in an attempt to assess their individual performances and the potential for improvements is also presented. The heating coefficient of performances of the ground-source heat pump unit and the overall system are obtained to be 2.64 and 2.38, respectively, while the exergetic efficiency of the overall system is found to be 67.7%.  相似文献   

19.
Coal fires originate from coal spontaneous combustion caused by oxidation starting even at low temperatures. In order to evaluate the heating and oxidation of coal placed inside a container, a Temperature-Programmed System (TPS) is used under various flow and oxidation conditions for temperatures ranging from 40 to 250 °C. As the coal samples are heated in the container within the TPS, the concentration histories of the gaseous products are measured as well as the temperature history at the center of the container. The Crossing-point Temperature (CPT) is the temperature (temperature and corresponding time) at which the increasing coal temperature is equal to the increasing oven temperature within the TPS. We have developed energy and oxygen mass conservation equations for the coal pile in a container inside the TPS oven assuming uniform conditions for temperature and oxygen concentrations, both assumptions partially justified because the heating rate in the oven is very low (1 °C/min). By subtracting the convective heat from the thermal inertia of the coal pile in the energy equation, we have obtained from the experimental data the heat owing to oxygen reaction or moisture evaporation. From the oxygen conservation and measurements, we have determined apparent activation energy and pre-exponential factor for oxidation assuming that oxidation is proportional to oxygen concentration. This information is useful for the mathematical modeling of oxidation and heating in the present experiments. Subsequently, the energy and mass conservation equations were solved after being transformed to non-dimensional form, which shows that four dimensionless parameters control the heating of coal in the present experiments. Only three of these parameters are examined in detail, namely a dimensionless flow time, a heat release parameter B, and a Damkohler number Da whereas a moisture parameter is discussed qualitatively. Based on the present analysis and data, four stages are identified: (I) initial heating with essentially no reaction or evaporation, (II) evaporation period with essentially no reaction, (III) an unsteady accelerated oxidation period during which crossover may occur and (IV) a heating late period where all the oxygen reacts inside the container.  相似文献   

20.
This paper presents an analysis of colour change in concrete under the influence of heat. The colour change observed in concrete is primarily a result of the gradual dehydration of the cement paste, but also of transformations occurring within the aggregate. The colour change may be used to reveal the exposure temperature of concrete from which the corresponding fire damage of concrete can be estimated. The paper presents the results of tests carried out on ordinary and high performance concretes (OC and HPC) prepared with natural river-bed aggregates. In addition, mortars and cement pastes prepared with the same components were observed to change colour upon heating. The colour change was investigated using Scion Image v. 4.0.3, an image analysis software package (Scion Corporation ©, USA). In the proposed method the digital image is split into three RGB colour components: red, green and blue, which are then presented as a histogram using counts of pixel intensity. The histogram results show colour distributions in unheated cementitious material and in material heated to temperatures ranging from 100°C to 1000°C. The concrete colour changes as a result of heating are linked to the physical and chemical transformations taking place in the heated material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号