首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A C++ language-based software tool for retrieving land surface temperature (LST) from the data of Landsat TM/ETM+ band6 is developed. It has two main functional modules: (1) Three methods to compute the ground emissivity based on land use/cover classification image, NDVI image and the ratio values of vegetation and bare ground and (2) Converting digital numbers (DNs) from TM/ETM+ band6 to LST. In the software tool, Qin et al.'s mono-window algorithm and Jiménez-Muňoz and Sobrino's single channel algorithm are programmed to retrieve LST. It will be a useful software tool to study the thermal environment of ground surface or the energy balance between the ground and the bottom atmosphere by using the thermal band of Landsat TM/ETM+.  相似文献   

2.

In the sand-dune region across the Israel-Egypt border, an anomalous phenomenon of thermal variation was observed on remote sensing images: the Israeli side with much more vegetation cover has higher surface temperature than the Egyptian side, where bare sand surface prevails. The study intends to examine the phenomenon using NOAA-AVHRR and Landsat TM data. The focus is to analyse the seasonal and spatial change of land surface temperature (LST) in the border region, to verify it through ground truth measurements and to simulate the average LST change on both sides according to surface composition structure. A split window algorithm containing only two parameters (transmittance and emissivity) has been developed for retrieving LST from NOAA-AVHRR data and a mono-window algorithm is proposed for computing LST from the only one thermal band of Landsat TM data. Application of these algorithms to the available AVHRR and Landsat TM data indicates that the LST anomaly does occur not only in one day but almost all the year. In hot dry summer the Israeli side is usually about 2.5-3.5°C hotter. In wet cool winter the LST difference between the sides is not large but the Israeli side still has higher LST. The Egyptian side may have slightly higher LST when surface temperature is below 20°C, several days after heavy rain, which leads to very wet surface conditions. The sharp LST contrast disappears on night-time images. Ground truth measurements indicate that the LST contrast mainly can be attributed to the surface temperature difference on the two typical surface patterns: biogenic crust and bare sand, which have above 3°C difference in surface temperature during summer. Experiments on soil samples from the field indicate that biogenic crust and sand have emissivity values of about 0.972 and 0.954, respectively, in hot dry conditions that match the environment of the region in summer. Surface composition determination based on three methods indicates that more than 72% of the ground on the Israeli side is covered with biogenic crust and more than 80% on the Egyptian side is bare sand. Actually, the LST anomaly can be understood as the direct result of surface composition difference, especially in biogenic crust and sand cover rate. Simulation with this surface composition difference shows that the Israeli side has steadily higher LST when the temperature of the biogenic crust is more than 1°C higher that of the sand surface, which usually occurs at moderate to high temperature levels (>30°C). When temperature is between 15 and 25°C, such as at about midnight, the two sides will have no obvious LST difference. This result is in agreement with the remote sensing observation. Therefore, it can be concluded that the vegetation cover does not contribute much to the LST contrast in comparison to the effect of the biogenic crust and sand cover.  相似文献   

3.
Thin cirrus clouds are dominated by non-spherical ice crystals with an effective emissivity of less than 0.5. Until now, the influences of clouds were not commonly considered in the development of algorithms for retrieving land-surface temperature (LST). However, numerical simulations showed that the influence of thin cirrus clouds could lead to a maximum LST retrieval error of more than 14 K at night if the cirrus optical depth (COD) at 12 μm was equal to 0.7 (cirrus emissivity equivalent to 0.5). To obtain an accurate estimate of the LST under thin cirrus using satellite infrared data, a nonlinear three-channel LST retrieval algorithm was proposed based on a widely used two-channel algorithm for clear-sky conditions. The variations in the cloud top height, COD, and effective radius of cirrus clouds were considered in this three-channel LST retrieval algorithm. Using Moderate Resolution Imaging Spectroradiometer (MODIS) channels 20, 31, and 32 (centred at 3.8, 11.0, and 12.0 μm, respectively) and the corresponding land surface emissivities (LSEs), the simulated data showed that this algorithm could obtain LSTs with root mean square errors (RMSEs) of less than 2.8 K when the COD at 12 μm is less than 0.7 and the viewing zenith angle (VZA) is less than 60°. In addition, a sensitivity analysis of the proposed algorithm showed that the total LST errors, including errors from the uncertainties in input parameters and algorithm error, were nearly the same as the algorithm error itself. Some lake surface water temperatures measured in Lake Superior and Lake Erie were used to test the performance of the proposed LST retrieval algorithm. The results showed that the proposed nonlinear three-channel algorithm could be used for estimating LST under thin cirrus with an RMSE of less than 2.8 K.  相似文献   

4.
A hybrid inversion technique based on Bayesian network is proposed for estimating the biochemical and biophysical parameters of land surface vegetation from remotely sensed data. A Bayesian network is a unified knowledge-inferring process that can incorporate information derived from multiple sources including remote sensing and information derived from a priori knowledge. Using this inversion approach, content of chlorophyll a and chlorophyll b (Cab) and leaf area index (LAI) of winter wheat were estimated from data derived from simulations as well as field measurements. Estimations from the simulated data proved accurate, with root mean square errors (RMSEs) of 0.54 m2/m2 in LAI and 4.5 μg/cm2 in Cab. In validating the estimates against field measurements, it was found that prior knowledge of target parameters improved the accuracy of estimates, in terms of RMSEs from 0.73 to 0.22 m2/m2 in LAI and 9.6 to 4.0 μg/cm2 in Cab. Bayesian inference in this hybrid inversion scheme produces a posterior probability distribution, which can reveal such properties of the inferred results as updated information contained in the inversion result. Using entropy, the revision of posterior information about the parameters of interest was calculated. Including more data may allow more information to be retrieved about parameters in general. Exceptions were also observed where data from some viewing angles slightly reduced the information on the parameters of interest. It was also found that data from these viewing angles were less sensitive to the parameters. The method proposed here was also validated using LandSat ETM+ imagery provided by the BigFoot project. When used for mapping LAI with ETM+ imagery, the proposed method with an RMSE of 0.70 and a correlation of 0.67 produced a slightly better result than that from empirical regression.  相似文献   

5.
In this paper, a methodology using a single-channel and a two-channel method is presented to estimate the land surface temperature from the DAIS (Digital Airborne Imaging Spectrometer) thermal channels 74 (8.747?µm), 75 (9.648?µm), 76 (10.482?µm), 77 (11.266?µm), 78 (11.997?µm) and 79 (12.668?µm). The land surface temperature retrieved with both methods has been validated over the Barrax site (Albacete, Spain) in the framework of the DAISEX (Digital Airborne Imaging Spectrometer Experiment) field campaigns. Prior to the validation an analysis of the DAIS data quality has been performed in order to check the agreement between in situ data and the values extracted from the DAIS images supplied by the DLR (German Optoelectronic Institute). Suitable differences between in situ and DAIS data have been found. To solve this problem a linear re-calibration of the DAIS thermal channels has been applied using two ground calibration points (bare soil and water). For the land surface temperature retrieved, rms deviations of 0.96?K using a single-channel method and 1.46?K using a two-channel method with the DAIS thermal channels 77 and 78 have been obtained considering re-calibrated data.  相似文献   

6.
This paper aims to determine land surface temperature (LST) using data from a spinning enhanced visible and infrared imager (SEVIRI) on board Meteosat Second Generation 2 (MSG-2) by using the generalized split-window (GSW) algorithm. Coefficients in the GSW algorithm are pre-determined for several overlapping sub-ranges of the LST, land surface emissivity (LSE), and atmospheric water vapour content (WVC) using the data simulated with the atmospheric radiative transfer model MODTRAN 4.0 under various surface and atmospheric conditions for 11 view zenith angles (VZAs) ranging from 0° to 67°. The results show that the root mean square error (RMSE) varies with VZA and atmospheric WVC and that the RMSEs are within 1.0 K for the sub-ranges in which the VZA is less than 30° and the atmospheric WVC is less than 4.25 g cm?2. A sensitivity analysis of LSE uncertainty, atmospheric WVC uncertainty, and instrumental noise (NEΔT) is also performed, and the results demonstrate that LSE uncertainty can result in a larger LST error than other uncertainties and that the total error for the LST is approximately 1.21 and 1.45 K for dry atmosphere and 0.86 and 2.91 K for wet atmosphere at VZA = 0° and at VZA = 67°, respectively, if the uncertainty in the LSE is 1% and that in the WVC is 20%. The GSW algorithm is then applied to the MSG-2 – SEVIRI data with the LSE determined using the temperature-independent spectral indices method and the WVC either determined using the measurements in two split-window channels or interpolated temporally and spatially using European Centre for Medium Range Weather Forecasting (ECMWF) data. Finally, the SEVIRI LST derived in this paper (SEVIRI LST1) is evaluated through comparisons with the SEVIRI LST provided by the land surface analysis satellite applications facility (LSA SAF) (SEVIRI LST2) and the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11B1 LST product). The results show that more than 80% of the differences between SEVIRI LST1 and SEVIRI LST2 are within 2 K, and approximately 70% of the differences between SEVIRI LST1 and MODIS LST are within 4 K. Furthermore, compared to MODIS LST, for four specific areas with different land surfaces, our GSW algorithm overestimates the LST by up to 1.0 K for vegetated surfaces and by 1.3 K for bare soil.  相似文献   

7.
The relationship between land surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) associated with urban land‐use type and land‐use pattern is discussed in the City of Shanghai, China using data collected by the Enhanced Thematic Mapper Plus (ETM+) and aerial photographic remote sensing system. There is an apparent correlation between LST and NDVI from the visual interpretation of LST and NDVI contrasts. Mean LST and NDVI values associated with different land‐use types are significantly different. Multiple comparisons of mean LST and NDVI values associated with pairings of each land‐use type are also shown to be significantly different. The result of a regressive analysis shows an inverse correlation relationship between LST and NDVI within all land‐use polygons, the same to each land‐use type, but correlation coefficients associated with land‐use types are different. An analysis on the relationship between LST, NDVI and Shannon Diversity Index (SHDI) shows a positive correlation between LST and SHDI and a negative correlation between NDVI and SHDI. According to the above results, LST, SHDI and NDVI can be considered to be three basic indices to study the urban ecological environment and to contribute to further validation of the applicability of relatively low cost, moderate spatial resolution satellite imagery in evaluating environmental impacts of urban land function zoning, then to examine the impact of urban land‐use on the urban environment in Shanghai City. This provides an effective tool in evaluating the environmental influences of zoning in urban ecosystems with remote sensing and geographical information systems.  相似文献   

8.
Estimating the distribution of impervious surfaces and vegetation is important for analysing urban landscapes and their thermal environment. The application of a crisp classification of land-cover types to analyse urban landscape patterns and land surface temperature (LST) in detail presents a challenge, mainly due to the complex characteristics of urban landscapes. In this article, sub-pixel percentage impervious surface areas (ISAs) and fractional vegetation cover (FVC) were extracted from bitemporal Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) data by linear spectral mixture analysis (LSMA). Their accuracy was assessed with proportional area estimates of the impervious surface and vegetation extracted from high-resolution data. A range approach was used to classify percentage ISA into different categories by setting thresholds of fractional values and these were compared for their LST patterns. For each ISA category, FVC, LST, and percentage ISA were used to quantify the urban thermal characteristics of different developed areas in the city of Fuzhou, China. Urban LST scenarios in different seasons and ISA categories were simulated to analyse the seasonal variations and the impact of urban landscape pattern changes on the thermal environment. The results show that FVC and LST based on percentage ISA can be used to quantitatively analyse the process of urban expansion and its impacts on the spatial–temporal distribution patterns of the urban thermal environment. This analysis can support urban planning by providing knowledge on the climate adaptation potential of specific urban spatial patterns.  相似文献   

9.
Land surface temperature (LST) is essentially considered to be one of the most important indicators used for assessment of the urban thermal environment. It is quite evident that land-use/land-cover (LULC) and landscape patterns have ecological implications at varying spatial scales, which in turn influence the distribution of habitat and material/energy fluxes in the landscape. This article attempts to quantitatively analyse the complex interrelationships between urban LST and LULC landscape patterns with the purpose of elucidating their relation to landscape processes. The study employed an integrated approach involving remote-sensing, geographic information system (GIS), and landscape ecology techniques on bi-temporal Landsat Thematic Mapper images of Southwestern Sydney metropolitan region and the surrounding fringe, taken at approximately the same time of the year in July 1993 and July 2006. First, the LULC categories and LST were extracted from the bi-temporal images. The LST distribution and changes and LST of the LULC categories were then quantitatively analysed using landscape metrics and LST zones. The results show that large differences in temperature existed in even a single LULC category, except for variations between different LULC categories. In each LST zone, the regressive function of LST with fractional vegetation cover (FVC) indicated a significant relationship between LST and FVC. Landscape metrics of LULC categories in each zone in relation to the other zones showed changing patterns between 1993 and 2006. This study also illustrates that a method integrating retrieval of LST and FVC from remote-sensing images combined with landscape metrics provides a novel and feasible way to describe the spatial distribution and temporal variation in urban thermal patterns and associated LULC conditions in a quantitative manner.  相似文献   

10.
This study examines the potential of the combined use of the land cover/land use information provided by the Corine Land Cover (CLC) database with Landsat satellite data for the definition and quantitative correlation of emissivity with various land covers and land uses that describe a certain territory. Surface emissivity in the 10.5–12.5 µm wavelength range is derived using Landsat data and the Normalized Difference Vegetation Index Thresholds method (NDVITHM), whereas mean emissivity values for selected urban/non‐urban land cover types are estimated by integrating the emissivity image with the land cover vector data. The method is applied to the greater Athens area, Greece, in order to estimate the emissivity of various land cover types found within the urban setting. Analysis of variance (ANOVA) indicates statistically significant differences in emissivity associated with different land cover types. Furthermore, statistical results demonstrate that the method is very effective and can provide emissivity values of different land cover types with good accuracy and therefore can quantitatively link emissivity with surface type.  相似文献   

11.

In this article, Landsat TM images acquired during the same season from both 1984 and 1997 were analysed for urban built-up land change detection in Beijing, China, where great changes have taken place during the recent decades. To reduce the spectral confusion between urban 'built-up' and rural 'non built-up' land cover categories, we propose a new structural method based on road density combined with spectral bands for change detection. The road density represents one type of structural information while the multiple Landsat TM bands represent spectral information. Road density maps for both dates were produced using a gradient direction profile analysis (GDPA) algorithm and then integrated with spectral bands. Results from the spectral-structural postclassification comparison (SSPCC) and spectral-structural image differencing (SSID) methods were evaluated and compared with spectral-only change detection methods. The proposed SSPCC method greatly reduced spectral confusion and increased the accuracy of land cover classification compared with spectral classification, which in turn improved the change detection results. This article also shows that the SSID change detection result complemented spectral band differencing by detecting areas with greater structural changes, some of which were missed, by spectral band differencing.  相似文献   

12.
Soil moisture saturation indicates the capability of the vegetation humus layer and the soil layer to reabsorb and drain water in an area; it is crucial in predicting natural disasters, such as landslides and droughts. In this article, a model was created to retrieve soil moisture saturation based on multispectral remotely sensed data. Soil brightness and soil wetness, calculated from the tasseled cap transformation, were utilized to obtain soil moisture saturation. With the above model, a soil moisture saturation map of Maoergai District, which is located on the upper Minjiang River in northern Sichuan Province in the south-west of China, was created from a Landsat Enhanced Thematic Mapper Plus (ETM+) image in July 2002. Then, the soil type data and the vegetation distribution data of the year 2000 were used to evaluate the model. The result shows that the model for soil moisture saturation is viable and that the vegetation type, vegetation distribution and soil type have strong correlation with soil moisture saturation.  相似文献   

13.
A wavelet transform method to merge Landsat TM and SPOT panchromatic data   总被引:1,自引:0,他引:1  
To take advantage of the high spectral resolution of Landsat TM images and the high spatial resolution of SPOT panchromatic images (SPOT PAN), we present a wavelet transform method to merge the two data types. In a pyramidal fashion, each TM reflective band or SPOT PAN image was decomposed into an orthogonal wavelet representation at a given coarser resolution, which consisted of a low frequency approximation image and a set of high frequency, spatially-oriented detail images. Band-by-band, the merged images were derived by performing an inverse wavelet transform using the approximation image from each TM band and detail images from SPOT PAN. The spectral and spatial features of the merged results of the wavelet methods were compared quantitatively with those of intensity-hue-saturation (IHS), principal component analysis (PCA), and the Brovey transform. It was found that multisensor data merging is a trade-off between the spectral information from a low spatial-high spectral resolution sensor and the spatial structure from a high spatial-low spectral resolution sensor. With the wavelet merging method, it is easy to control this trade-off. Experiments showed that the simultaneous best spectral and spatial quality can only be achieved with wavelet transform methods, compared with the three other approaches examined.  相似文献   

14.
The estuarine area of Pearl River that has taken great changes in land cover since 1990 is a typical area for studying the change of land surface temperature (LST). The LST of the years 1990 and 2000 in this area was estimated from the data of Landsat TM/ETM+ band 6, respectively, and three scales, corresponding to high, normal and low temperature ranges, were divided by a robust statistical method. The results show that the area of high temperature range in 2000 has an increase of 250 km2 compared with the year 1990. The urban‐used land and the bare land are the main land cover types constituting the high temperature range area.  相似文献   

15.
A sequence of five high-resolution satellite-based land surface temperature (Ts) images over a watershed area in Iowa were analyzed. As a part of the SMEX02 field experiment, these land surface temperature images were extracted from Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper (ETM) thermal bands. The radiative transfer model MODTRAN 4.1 was used with atmospheric profile data to atmospherically correct the Landsat data. NDVI derived from Landsat visible and near-infrared bands was used to estimate fractional vegetation cover, which in turn was used to estimate emissivity for Landsat thermal bands. The estimated brightness temperature was compared with concurrent tower based measurements. The mean absolute difference (MAD) between the satellite-based brightness temperature estimates and the tower based brightness temperature was 0.98 °C for Landsat 7 and 1.47 °C for Landsat 5, respectively. Based on these images, the land surface temperature spatial variation and its change with scale are addressed. The scaling properties of the surface temperature are important as they have significant implications for changes in land surface flux estimation between higher-resolution Landsat and regional to global sensors such as MODIS.  相似文献   

16.
提出一种快速的边部检测算法,即边界局部搜索算法,并应用于冷轧带钢表面缺陷在线检测系统。它采用一种局部搜索的思想,在前一次搜索的基础上准确定位钢板边部,大大提高了算法的实现速度。对现场图像数据测试表明,边界局部搜索算法比传统的灰度梯度阈值算法的速度快 20200倍左右,并且检测的效果得到有效的提高。这种算法还可以用于其他图像边界的搜索。  相似文献   

17.

Evaluation of change in land use is important for planning further development in populated areas. Here we attempt to determine the growth of urban areas in the vicinity of Mexico City, using a 1993 Landsat Thematic Mapper (TM) image and cartographic data contained in maps published by the Instituto Nacional de Estadistica Geografia e Informatica (INEGI 1975, 1983). The area occupied by urban areas in 1975 and 1983 was quantified using raster images generated by scanning the maps. Supervised classification processes were applied to a 1993 Landsat TM image in bands 1, 2, 3, 4, 5 and 7, of the area of Chalco. The image was pre-processed and then processed to enhance the spectral response of the surface materials. The different land cover types that characterise distinct land uses in the study area were identified in the image and an overall classification accuracy of 82% was estimated using aerial photographs from the Chalco area. The resulting evaluation of the land use changes in the Chalco urban area was plotted, and a growth greater than 14% per year was estimated.  相似文献   

18.
Landsat thermal data are employed to derive lake and sea surface temperatures. The limitations of this approach are obvious, since the calculation of surface temperatures based solely on image data requires at least two thermal bands to compensate the atmospheric influence which is mainly caused by water vapour absorption. However, the 1 km spatial resolution of currently available multi‐band thermal satellite sensors (NOAA‐AVHRR, MODIS) is often not appropriate for lake and coastal zone applications. Therefore, it is worthwhile investigating the accuracy which can be obtained with single‐band thermal data using radiosonde information of the atmospheric water vapour column from meteorological stations in the study area. In addition, standard atmospheres from the MODTRAN code were considered that are based on seasonal climatologic values of water vapour, e.g. mid‐latitude summer, mid‐latitude winter, etc.

The study area of this investigation comprises various lakes and coastal zones of the Baltic Sea in NE Germany. Landsat‐7 ETM+ imagery of nine acquisition dates was selected covering the time span from February to November 2000. Results of derived lake and sea surface temperatures were compared with in situ measurements and with an empirical model of the Deutscher Wetterdienst (Germany's National Meteorological Service, DWD). RMS deviations of 1.4 K were obtained for the satellite‐derived lake surface temperatures with respect to in situ measurements and 2.2 K with respect to the empirical DWD model. RMS deviations of 1.6 K were obtained with respect to in situ bulk temperatures in coastal zones of the Baltic Sea. This level of agreement can be considered as satisfactory given the principal constraints of this approach. A better accuracy can only be obtained with high spatial resolution (<100 m) multi‐band thermal instruments delivering imagery on an operational basis.  相似文献   

19.
The Scottish Office's Land Cover of Scotland 1988 Survey (LCS88), was announced in May 1987 and was intended to provide the first-ever detailed census of land cover in Scotland. It came about as a result of increasing concern about the nature and rate of land use change in rural Scotland and the need to obtain objective baseline information on which to build and evaluate future countryside policy. One of the recommendations of a Scottish Office feasibility study carried out prior to the LCS88 survey, was that satellite remotely-sensed data should be considered for measuring landscape change in the future. This paper relates specifically to this recommendation and presents the results of an evaluation study to investigate the use of limited acquisition satellite imagery from Landsat Thematic Mapper, to derive a land cover classification and spectral segmentation information to enhance the existing LCS88 dataset. Although a successful land cover, primary as well as some individual cover features, was obtained from the satellite data, the overall accuracy comparison with the LCS88 cover features was limited. However, the opportunistic mapping of important agricultural crops and primary cover types, such as oilseed rape and forestry cover features, or the interpretation of some of the considerable confusion between semi-natural grassland and improved grassland cover features, provided for an enhanced LCS88 dataset. This was also true for the illustration of the considerable potential of a satellite classification and spectral data, for identifying the component parts of LCS88 Mosaic cover features and estimating vegetation quality.  相似文献   

20.
ABSTRACT

This article verified the error between inversed land surface temperature (LST) and measured LST and developed the modified model based on Landsat 8 remote-sensing data. First, a single-channel algorithm was used to invert the surface temperature using four Landsat 8 remote-sensing images and the LST of the 98 measured points were obtained meantime. Then, the modified model between inversed LST and measured LST was developed based on LST for the 74 measured points. Finally, the developed models were used to modify the inversion temperatures at other 24 measured points, and the mean absolute error (MAE) and mean square error (MSE) between the measured temperature and the inversed temperature before and after the modification were compared to verify the validity of the model. The results showed that the MAE and the MSE of temperature for the 24 measured points used for verification reduced by 0.26 and 0.20 K, respectively, after modification. The development of the modified model can provide an important reference for using Landsat 8 remote-sensing image to invert surface temperature in other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号