首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
This study proposed regional coefficients for estimating hourly global solar radiation through the adaptation of some empirical models that relate radiation to climatological and geographical variables. A total of 10 models were adapted over 7 stations in Ireland. The performance of the models was evaluated using some selected error indicators including the global performance index which combines all other error indices. The results indicated that the sunshine based regional calibration coefficients generated through a polynomial approach was most superior over other models with the lowest RMSE (0.2–0.3?MJm?2?hr?1), MAE (0.1–0.2?MJm?2?hr?1) and Pbias (0–7.0%) and highest R2 and KGE (>0.85). The study found no local effect such as instrumental siting, observational uncertainty and climate on the variations of these coefficients. This outcome will therefore facilitate the design of various local and/or regional solar energy applications at microscale in a temperate region.  相似文献   

2.
Electrolysis is a relatively simple process for obtaining hydrogen and can be combined with use of renewable energy sources, such as solar photovoltaic energy, for clean, sustainable gas production. This study designed a cylindrical electrolytic cell made of acrylic and 304 stainless steel electrodes to produce hydrogen. The electrolyte used was sodium hydroxide (NaOH 2–5 mol L?1), and the direct current voltages applied were 2.0, 2.7, and 3.4 V. The maximum hydrogen production was achieved with 5.0 mol L?1 NaOH and 3.4 V electric voltage. The system was connected to a photovoltaic panel of 20 W and exposed to solar radiation from 10 a.m. to 2 p.m. Approximately 2 L of hydrogen was produced within a period, and an average irradiance of 800.0 W m?2 ± 60 W m?2 was achieved. The system was stable throughout the tests.  相似文献   

3.
The development of photoelectrodes capable of light-driven hydrogen evolution from water with non-noble metals is an important approach for the storage of solar energy in the form of a chemical energy carrier. In this study, we report Co nanoparticles@N-doped carbon coated on carbon nanotube@defective-silica (CNTs@Co@NC/D-SiO2), which are composed of Co nanoparticles@N-doped carbon as electrocatalyst, defective-silica as photocatalyst and carbon nanotube as conductive substrates. The obtained non-noble photocathode possesses the high performance for efficient photoelectrochemical hydrogen evolution reaction. When evaluated for hydrogen evolution reaction electrocatalysis, CNTs@Co@NC/D-SiO2 exhibits a small onset overpotential of 104 mV (J = 1 mA cm?2), a Tafel slope of 69.1 mV dec?1 and outstanding long-term cycling stability. The P type semiconductor characteristics of CNTs@Co@NC/D-SiO2 due to defective-silica with carrier concentration of 3.53 × 1019 cm?3 is measured, which produces a significant positive shift of overpotential of 40 mV (J = 10 mA cm?2) under 100 mW cm?2 simulated sunlight irradiation. These findings provide a straightforward and effective route to produce cheap and efficient photo-electro-catalyst for water splitting.  相似文献   

4.
Electrochemical water splitting has gained momentum for the development of alternative energy sources. Herein, we report the synthesis of two different nickel selenide nanostructures of different morphology and composition employing hydrothermal method. NiSe2 nanosheets were obtained by the anion-exchange reaction of Ni(OH)2 with Se ions for 15 h. On the other hand, NiSe nanoflakes were synthesized by the direct selenization of nickel surface with the reaction time of 2 h. Tested as an electrocatalyst for hydrogen evolution reaction, NiSe2 nanosheets and NiSe nanoflakes can afford a geometric current density of 10 mA cm?2 at an overpotential of 198 mV and 217 mV respectively. The measured Tafel slope values of NiSe nanoflakes are 28.6 mV dec?1, which is three times lower as compared with NiSe2 nanosheets (72.1 mV dec?1). These results indicates the HER kinetics of NiSe nanoflakes are at par with the state-of-the-art Pt/C catalyst and also complimented with the short synthesis time of 2 h. Further, both nickel selenides exhibit ultra-long term stability for 30 h as evident from constant current chronopotentiometry and electrochemical impedance spectroscopy results.  相似文献   

5.
A high performance polymer electrolyte thermogalvanic cell, which converts thermal energy to electrical energy directly, is transformed from a proton exchange membrane fuel cell. The transform is realized by connecting the anode and cathode chamber with a gas tube and filling hydrogen to both chambers. Provided a heat flux through the cell, hydrogen is consumed in the cold side and regenerated in the hot side while circulating in two chambers during operation. The Seebeck coefficient is 0.531 mV K?1 at a cold side temperature of 60.0 °C and the maximum power density could reach up to 20 μW cm?2 with a temperature difference of 15.3 °C between two electrodes.  相似文献   

6.
Micrometer sized carbon spheres (CSs) are prepared in a single step using lactose precursor via hydrothermal method. These CSs are chemically modified with 3-chloro-2-hydroxypropyl ammonium chloride (CHPACl) and triethylenetetramine (TETA) to generate amine groups on the particle surface. Modified CSs with TETA was protonated with HCl as CSs-TETA-HCl that the zeta potential is increased to +40.3 ± 0.70 from ?51.4 ± 4.66 mV. The catalytic performance of CSs are tested as catalysts in the methanolysis of NaBH4, and the best catalytic performance as 2586 mL min?1 g?1 hydrogen generation rate (HGR) was obtained by CSs-TETA-HCl catalyst at 298 K as metal free catalyst. Furthermore, various parameters such as the amount of NaBH4, the reaction temperature, and the reusability of CSs-TETA-HCl particles are investigated. More importantly, relatively low activation energy, 23.82 kJ mol?1 for CSs-TETA-HCl catalyzed NaBH4 methanolysis reaction is obtained in comparison to metal nanoparticle and metal free catalysts reported for the same purpose in the literature.  相似文献   

7.
The thermodynamically and kinetically stable regions of the temperature–H2 pressure phase boundaries for the ZrCoH system were established using the Temperature-Concentration-Isobar (TCI) method. Based on this, the enthalpy change and entropy change values of dehydrogenation and disproportionation reactions were successfully obtained. The average enthalpy change (ΔH) and entropy change (ΔS) estimated from the phase boundaries for dehydrogenation of ZrCoH3 to ZrCo are respectively 103.07 kJ mol?1H2 and 148.85 J mol?1 H2 K?1, which are well agreement with the data reported in literature. The average ΔH and ΔS were estimated to be ?120.91 kJ mol?1H2 and -149.32 J mol?1 H2 K?1 for the disproportionation of ZrCoH3, whereas the ΔH and ΔS were calculated to be ?84.6 kJ mol?1H2 and -92.29 J mol?1 H2 K?1 for disproportionation of ZrCo. In addition, it was found from the established phase boundaries that the anti-disproportionation property of ZrCo alloy can be enhanced if the phase boundaries of hydrogenation/dehydrogenation are far away from the phase boundaries of disproportionation by adjusting the thermodynamics. Meanwhile, it is possible to keep ZrCo away from disproportionation even at high temperature of 650 °C under hydrogen atmosphere, if the temperature-H2 pressure trajectory is carefully controlled without crossing the phase boundaries of disproportionation. Therefore, the established phase boundaries can be used as a guide to the eye avoiding disproportionation and improving the anti-disproportionation property of ZrCo alloy.  相似文献   

8.
The development of bifunctional electrochemically-active materials for both hydrogen evolution reaction (HER) and supercapacitors enables the possibility to integrate energy storage and production into one single system. Here, we report a novel bifunctional mesoporous Ni2P nanobelt-like architecture prepared via the hydrothermal synthesis of Ni(SO4)0.3(OH)1.4 nanobelt precursor and subsequent low temperature phosphorization process under Ar atmosphere. Composed of numerous cross-linked Ni2P nanoparticles, the as-obtained Ni2P nanobelts exhibit a two dimensional leaf-like morphology, allowing remarkable enhancement of mesoporosity as well as active surface area. The HER electrocatalytic test in acid medium show a current density of 16 mA cm?2 at an overpotential of 187 mV, Tafel slope of 62 mV dec?1 and long-term durability. Investigation of this Ni2P nanobelts as supercapacitor materials in 2M KOH electrolyte display a high specific capacity ranging from 1074 F g?1 at 0.625 A g?1 to 554 F g?1 at 25 A g?1, and notable cycling life with 86.7% retention after 3000 cycles at 10 A g?1. With the simplicity of the synthetic routine and the outstanding performance as both HER catalysts and supercapacitors, the Ni2P nanobelts provide promising potential for energy devices.  相似文献   

9.
The development of efficient, non-precious metal catalysts for preparing hydrogen by water decomposition, which is a perfect alternative for increasingly serious environmental pollution and energy needs. In this work, we report that a porous CoP-350 nanostructure material was prepared using Co-based metal organic frameworks (DUT-58) as the precursor by pyrolysis and low temperature phosphating. The porous CoP-350 nanostructure electrocatalyst in this report exhibits excellent performance with a small Tafel slope of 64 mV dec?1, long-term durability and an overpotential of 126 mV at current density 10 mA cm?2 in 0.5 M H2SO4 for the hydrogen evolution reaction (HER). All in all, this work provides an approach to synthesize porous CoP nanostructure as the transition metal phosphides catalyst.  相似文献   

10.
Alternatives to noble metal based electrocatalysts are vitally necessary to produce hydrogen from water at low overpotentials. Earlier research on tungsten based electrocatalyst has been mainly concentrated towards tungsten carbide (WC) and tungsten nitride (WN) as the potential electrocatalysts for hydrogen evolution reaction (HER), whereas tungsten carbide (W2C) has been least focused upon. Herein, we report a highly active novel strongly coupled tungsten-carbon-nitrogen complex (W2C-NC-WN complex) prepared by in situ carbonization method. This W2C-NC-WN complex exhibits a remarkable electrochemical performance for HER with a small onset potential of 33 mV vs. RHE and requires an overpotential (η) of 145 mV vs. RHE to render ?10 mA cm?2 current density. The Tafel analysis demonstrates a slope of 96 mV dec?1 which is much better than WN (109.6 mV dec?1) and WC (142.4 mV dec?1). The strong coupling of W2C and WN within N-doped carbon (NC) framework brings about a significant enhancement in HER kinetics and faster electron transport due to the remarkable reduction in charge transfer resistance. The facile synthetic approach reported here, provides a powerful tool for the structurally controlled modification of the catalyst while simultaneously introducing active species.  相似文献   

11.
In this work, three-dimensional (3D) interconnected S-doped porous carbon materials are fabricated using bio-waste sodium lignosulfonate as carbon and sulfur precursor by in situ carbonization and subsequent KOH activation process. The as-obtained S-PC-50 has high specific surface area of 1592 m2 g?1, high S weight percentage up to 5.2 wt% and interconnected porous framework consisting of micro-, meso- and macropores. As a result, the S-PC-50 exhibits a high specific capacitance of 320 F g?1 at 0.2 A g?1, excellent rate performance with 76.5% capacitance retention after a current density increasing from 2 A g?1 (200 F g?1) to 100 A g?1 (153 F g?1) and 99% capacitance retention after 10,000 cycles at 5 A g?1. Besides, the symmetric supercapacitor can deliver a high energy density up to 8.2 Wh kg?1 at 50 W kg?1.  相似文献   

12.
In this work, we report the significant enhancement of the electrochemical performance and flexibility of a lithium–oxygen battery by introducing a free-standing, binder-free carbon nano-fibers (CNF) grafted carbon paper cathode with a bimodal pore architecture. The small pore structures (~100 nm) accommodated Li2O2, and the large pore structures (~10 μm) enabled effective oxygen diffusion without clogging the pores. This kind of cathode overcame some troubles of the cathode prepared by spraying coating method, such as the low utilization of substrate surface, the unreasonable aperture structure and the aggregation of active carbon material. As a result, this electrode structure imparted stability to active sites during the recovery of discharge products to the initial state, providing long-term cyclability of more than 800 cycles in a 1 M LiTFSI/TEGDME electrolyte system. In addition, the battery output a discharge capacity as high as 20000 mAh g?1 at 468 mA g?1 and exhibited a charge/discharge rate as high as 1136 mA g?1 (0.57 mA cm?2). The test results suggest that these CNF-grafted carbon papers have the potential to be used for oxygen/air electrodes for next-generation lithium-oxygen batteries, though the present results need to be improved to achieve performance of practical significance, namely with regard to (i) cathode mass loading to get higher areal capacity, and (ii) cycling performance at higher current density.  相似文献   

13.
SmBa0.5Sr0.5Co2O5+δ (SBSC55) impregnated with nano-sized Ce0.8Sm0.2O1.9 (SDC) powder has been investigated as a candidate cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The cathode chemical compatibility with electrolyte, thermal expansion behavior, and electrochemical performance are investigated. For compatibility, a good chemical compatibility between SBSC55 and SDC electrolyte is still kept at 1100 °C in air. For thermal dilation curve, it could be divided into two regions, one is the low temperature region (100–265 °C); the other is the high temperature region (265–850 °C). In the low temperature region (100–265 °C), a TEC value is about 17.0 × 10?6 K?1 and an increase in slope in the higher temperatures region (265–800 °C), in which a TEC value is around 21.1 × 10?6 K?1. There is an inflection region ranged from 225 to 330 °C in the curve of d(δL/L)/dT vs. temperature. The peak inflection point located about 265 °C is associated to the initial temperature for the loss of lattice oxygen and the formation of oxygen vacancies. For electrochemical properties, the polarization resistances (Rp) significantly reduced from 4.17 Ω cm2 of pure SBSC55 to 1.28 Ω cm2 of 0.65 mg cm?2 of SDC-impregnated SBSC55 at 600 °C. The single cell performance of SBSC55∣SDC∣Ni-SDC loaded with 0.65 mg cm?2 SDC exhibited the optimum power density of 823 mW cm?2 at operating temperature of 800 °C. Based on above-mentioned properties, SBSC55 impregnated with an appropriate SDC is a potential cathode for IT-SOFCs.  相似文献   

14.
Novel Sm2O3?NiO composite was prepared as the functional electrolyte for the first time. The total electrical conductivity of Sm2O3?NiO is 0.38 S cm?1 in H2/air condition at 550 °C. High performance, e.g. 718 mW cm?2, was achieved using Sm2O3?NiO composite as an electrolyte of solid oxide fuel cells operated at 550 °C. The electrical properties and electrochemical performance are strongly depended on Sm2O3 and NiO constituent phase of the compositions. Notably, surprisingly high ionic conductivity and fuel cell performance are achieved using the composite system constituting with insulating Sm2O3 and intrinsic p-type conductive NiO with a low conductivity of 4 × 10?3 S cm?1. The interfacial ionic conduction between two phases is a dominating factor giving rise to significantly enhanced proton conduction. Fuel cell performance and further ionic conduction mechanisms are under investigation.  相似文献   

15.
Here we report on Bi2O3 clusters immobilized on anatase TiO2 nanostructures for an enhanced rate of photocatalytic H2 evolution. Structural, morphological, and optical properties of the Bi2O3@TiO2 nanocomposite (BT) were characterized by a series of techniques including X-ray diffraction, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy and electrochemical impedance spectroscopy. The catalytic H2 evolution experiments were carried out under different light sources: natural solar light, LED UV (365 ± 5 nm) and LED visible (420 ± 5 nm) light source. Under the solar light a pristine anatase TiO2 nanostructured (TNS) catalyst generated 4.20 mmol h?1 g?1, whereas in the presence of Bi2O3@TNS showed much higher H2 production 26.02 mmol h?1 g?1. The photocatalytic activity of the BT and its reproducible performance for five recycles is ascribed to an efficient separation of photogenerated charge carriers. A plausible reaction mechanism for the H2 generation is proposed.  相似文献   

16.
The durability of proton exchange membrane (PEM) fuel cells is a key factor which prevents its commercial application on the vehicle. Dynamic current cycle is one of the most common conditions for PEM fuel cells, especially varying the currents between the idling and the rated condition. To investigate the degradation behavior of fuel cells under this kind of dynamic cycles, a PEM fuel cell stack with 330 cm2 active area is operated under 10,000 dynamic cycles with the cycling current density ranging from 25 mAcm?2 to 600 mAcm?2, which simulates common operating conditions in a vehicle cycle from the idling condition to the rated condition. Polarization curves, the high-frequency resistance (HFR), the uniformity of the individual cells, the performance degradation of PEM fuel cell stack at 25 mAcm?2 and 600 mAcm?2 are characterized to investigate the performance degradation over cycling. In addition, scanning electron microscopy (SEM) of the surface and the cross-section of the tested membrane electrode assemblies (MEAs) are compared with different single-cell samples. The results indicate that the degradation rate of the stack is 1.0 μVcycle?1 at 25 mAcm?2 under the idling condition. A more severe performance degradation of about 2.0 μVcycle?1 is detected at 600 mAcm?2 under the rated condition. The individual cell near the coolant outlet of the PEM fuel cell stack shows a more serious degradation caused by the HFR increase, which is also proved by the SEM analysis. The cross-section SEM analysis indicates that the dynamic cycle has a significantly negative effect on the catalyst layer, resulted in an obvious decrease on the thickness of the catalyst layer.  相似文献   

17.
Improving cathode performance at a lower Pt loading is critical in commercial PEMFC applications. A novel Pt nanowire (Pt-NW) cathode was developed by in-situ growth of Pt nanowires in carbon matrix consisting Pt nanoparticles (Pt-NPs). Characterization of TEM and XRD shows that the pre-existing Pt-NPs from Pt/C affect Pt-NW morphology and crystallinity and Pt profile crossing the matrix thickness. The cathode with Pt-NP loading of 0.005 mgPt-NP cm?2 and total cathode Pt loading of 0.205 mgPt cm?2 has the specific current density of 89.56 A gPt?1 at 0.9 V, which is about 110% higher than that of 42.58 A gPt?1 of the commercial gas diffusion layer (GDE) with Pt loading of 0.40 mg cm?2. When cell voltage is below 0.48 V, the Pt-NW cathode has better performance than the commercial GDE. It is believed that the excellent performance of the Pt-NW cathode is attributed to Pt-NP induction, therefore producing unique Pt-NW structure and efficient Pt utilization. A Pt-NW growth mechanism was proposed that Pt precursor diffuses into the matrix consisting of pre-existent Pt-NPs by concentration driving, and Pt-NPs provide priority sites for platinum depositing at early stage and facilitate Pt-NW growth.  相似文献   

18.
Carbon nanotubes (CNTs) have been widely exploited to improve anodic performance, but information is needed on their long-term stability for improvement. Herein, we prepared a novel CNTs-modified graphite felt (CNTs-GF) by a simple and scalable process and evaluated its long-term performance using anaerobic sludge as inoculum. the MFC with CNTs-GF yielded a sustained enhancement of power output, increasing from 1.93 ± 0.09 W m?2 after 1 month to 2.10 ± 0.05 W m?2 after 3 months and reaching 2.00 ± 0.10 W m?2 after 13 month, indicating the enhancement in electricity generation by the CNTs was not declined over one year. However, the bare GF showed a declining tendency of performance during 13 months. The long-term enhancement can be explained by the facts that the CNTs-GF was beneficial to electrochemically active biofilms (EABs) growth and interacted better with EABs and increased the extracellular electron transfer. Community analysis showed an increase in Geobacter in response to CNTs modification. These results demonstrated that CNTs modification could sustain a superior long-term enhancement in MFC performance.  相似文献   

19.
PdO/ZrO2 co-infiltrated (La0.8Sr0.2)0.95MnO3-δ-(Y2O3)0.08(ZrO2)0.92 (LSM-YSZ) composite cathode (PdO/ZrO2+LSM-YSZ), which adsorbs more oxygen than equal amount of PdO/ZrO2 and LSM-YSZ, is developed and used in Ni-YSZ anode-supported cells with YSZ electrolyte. The cells are investigated firstly at temperatures between 650 and 750 °C with H2 as the fuel and air as the oxidant and then polarized at 750 °C under 400 mA cm?2 for up to 235 h. The initial peak power density of the cell is in the range of 438–1207 mW cm?2 at temperatures from 650 to 750 °C, corresponding to polarization resistance from 1.04 to 0.35 Ω cm2. This result demonstrates a significant performance improvement over the cells with other kinds of LSM based cathode. The cell voltage at 750 °C under 400 mA cm?2 decreases from initial 0.951 to 0.89 V after 170 h of current polarization and remains essentially stable to the end of current polarization. It is identified that the self-limited growth of PdO particles is responsible for the cell voltage decrease by reducing the length of triple phase boundary affecting the high frequency steps involved in oxygen reduction reaction in the cathode.  相似文献   

20.
Nano films of nylon 6 and polyaniline (0, 1, 2, 3, 4, 5, and 6 wt. %) were prepared by the electrospinning technique. The addition of polyaniline increased the electrical conductivity of nylon 6. Pure nylon had an electrical conductivity of 3.8 × 10?3 S/cm, while the conductivity of nylon 6 with 1% polyaniline was 10.2 × 10?3 S/cm. In addition, the electrospinning process increased the electrical conductivity of bulk nylon 6 from 10?14 S/c to 10.2 × 10?3 S/cm. The viscosity and surface tension of nylon 6 decreased with increasing polyaniline content. The morphology of the prepared films was observed with SEM, and the average diameter of the fibre diameters, which was measured statically from the SEM images, was found to be 74 nm for a nylon film with 4 wt.% polyaniline, and 180 nm for pure nylon. The nanofibre films showed an enhanced electrical conductivity with increasing polyaniline concentration, from 2.627 × 10?10 S/cm for a pure nylon film to 3.44 × 10?7 S/cm for a nylon film with 6 wt.% polyaniline. The activation energy decreased with increasing polyaniline concentration. The activation energy was 0.135, 0.0899, 0.0864, 0.0811, 0.078, 0.075 and 0.07299 eV for pure nylon, and nylon with 1, 2, 3, 4, 5, and 6 wt.% polyaniline, respectively. The activation energy of the prepared nylon films decreased in comparison with the activation energy of a pure nylon 6 film, while the electrical conductivity increased as the amount of polyaniline was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号